## Young-Il Jeong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7100642/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Clonazepam release from core-shell type nanoparticles in vitro. Journal of Controlled Release, 1998, 51, 169-178.                                                                                                                  | 4.8 | 219       |
| 2  | Retinol-encapsulated low molecular water-soluble chitosan nanoparticles. International Journal of<br>Pharmaceutics, 2006, 319, 130-138.                                                                                            | 2.6 | 191       |
| 3  | Ciprofloxacin-encapsulated poly(dl-lactide-co-glycolide) nanoparticles and its antibacterial activity.<br>International Journal of Pharmaceutics, 2008, 352, 317-323.                                                              | 2.6 | 124       |
| 4  | Biocompatible Poly(2â€hydroxyethyl methacrylate)â€ <i>b</i> â€poly( <scp>L</scp> â€histidine) Hybrid Materials<br>for pHâ€Sensitive Intracellular Anticancer Drug Delivery. Advanced Functional Materials, 2012, 22,<br>1058-1068. | 7.8 | 107       |
| 5  | Cisplatinâ€incorporated hyaluronic acid nanoparticles based on ionâ€complex formation. Journal of<br>Pharmaceutical Sciences, 2008, 97, 1268-1276.                                                                                 | 1.6 | 97        |
| 6  | Physical, morphological, and wound healing properties of a polyurethane foam-film dressing.<br>Biomaterials Research, 2016, 20, 15.                                                                                                | 3.2 | 92        |
| 7  | Preparation of poly(?-lactide-co-glycolide) microspheres encapsulating all-trans retinoic acid.<br>International Journal of Pharmaceutics, 2003, 259, 79-91.                                                                       | 2.6 | 89        |
| 8  | Preparation and spectroscopic characterization of methoxy poly(ethylene glycol)-grafted water-soluble chitosan. Carbohydrate Research, 2008, 343, 282-289.                                                                         | 1.1 | 87        |
| 9  | Doxorubicin-incorporated nanoparticles composed of poly(ethylene glycol)-grafted carboxymethyl chitosan and antitumor activity against glioma cells in vitro. Colloids and Surfaces B: Biointerfaces, 2010, 79, 149-155.           | 2.5 | 87        |
| 10 | Doxorubicin-incorporated polymeric micelles composed of dextran-b-poly(DL-lactide-co-glycolide) copolymer. International Journal of Nanomedicine, 2011, 6, 1415.                                                                   | 3.3 | 86        |
| 11 | Methotrexate-incorporated polymeric nanoparticles of methoxy poly(ethylene glycol)-grafted chitosan. Colloids and Surfaces B: Biointerfaces, 2009, 69, 157-163.                                                                    | 2.5 | 76        |
| 12 | Paclitaxel-incorporated nanoparticles of hydrophobized polysaccharide and their antitumor activity.<br>International Journal of Pharmaceutics, 2012, 433, 121-128.                                                                 | 2.6 | 60        |
| 13 | Smart Nanoparticles Based on Hyaluronic Acid for Redox-Responsive and CD44 Receptor-Mediated Targeting of Tumor. Nanoscale Research Letters, 2015, 10, 981.                                                                        | 3.1 | 54        |
| 14 | Antitumor activity of sorafenib-incorporated nanoparticles of dextran/poly(dl-lactide-co-glycolide)<br>block copolymer. Nanoscale Research Letters, 2012, 7, 91.                                                                   | 3.1 | 50        |
| 15 | 5-aminolevulinic acid-incorporated nanoparticles of methoxy poly(ethylene glycol)-chitosan copolymer for photodynamic therapy. International Journal of Nanomedicine, 2013, 8, 809.                                                | 3.3 | 48        |
| 16 | Self-Assembled Polymeric Micelles Based on Hyaluronic Acid-g-Poly(d,l-lactide-co-glycolide)<br>Copolymer for Tumor Targeting. International Journal of Molecular Sciences, 2014, 15, 16057-16068.                                  | 1.8 | 48        |
| 17 | Self-assembled nanoparticles of hyaluronic acid/poly(dl-lactide-co-glycolide) block copolymer.<br>Colloids and Surfaces B: Biointerfaces, 2012, 90, 28-35.                                                                         | 2.5 | 47        |
| 18 | Anticancer activities of epigallocatechin-3-gallate against cholangiocarcinoma cells. OncoTargets and Therapy, 2017, Volume 10, 137-144.                                                                                           | 1.0 | 46        |

YOUNG-IL JEONG

| #  | Article                                                                                                                                                                                                  | IF          | CITATIONS                   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------|
| 19 | Folic-acid-conjugated pullulan/poly(DL-lactide-co-glycolide) graft copolymer nanoparticles for<br>folate-receptor-mediated drug delivery. Nanoscale Research Letters, 2015, 10, 43.                      | 3.1         | 42                          |
| 20 | Core-shell type polymeric nanoparticles composed of poly(l-lactic acid) and poly(N-isopropylacrylamide). International Journal of Pharmaceutics, 2000, 211, 1-8.                                         | 2.6         | 41                          |
| 21 | Enzyme-responsive doxorubicin release from dendrimer nanoparticles for anticancer drug delivery.<br>International Journal of Nanomedicine, 2015, 10, 5489.                                               | 3.3         | 41                          |
| 22 | Doxorubicin release from core-shell type nanoparticles of poly(DL-lactide-co-glycolide)-grafted dextran. Archives of Pharmacal Research, 2006, 29, 712-719.                                              | 2.7         | 40                          |
| 23 | Effect of 5-aminolevulinic acid-based photodynamic therapy via reactive oxygen species in human cholangiocarcinoma cells. International Journal of Nanomedicine, 2011, 6, 1357.                          | 3.3         | 40                          |
| 24 | Triggered doxorubicin release using redox-sensitive hyaluronic acid-g-stearic acid micelles for targeted cancer therapy. Carbohydrate Polymers, 2019, 209, 161-171.                                      | 5.1         | 38                          |
| 25 | Combination antitumor effects of micelle-loaded anticancer drugs in a CT-26 murine colorectal carcinoma model. International Journal of Pharmaceutics, 2010, 383, 192-200.                               | 2.6         | 37                          |
| 26 | Ursodeoxycholic acid-conjugated chitosan for photodynamic treatment of HuCC-T1 human cholangiocarcinoma cells. International Journal of Pharmaceutics, 2013, 454, 74-81.                                 | 2.6         | 37                          |
| 27 | Antitumor activity of vorinostat-incorporated nanoparticles against human cholangiocarcinoma cells. Journal of Nanobiotechnology, 2015, 13, 60.                                                          | 4.2         | 34                          |
| 28 | Dual Stimuli-Responsive Vesicular Nanospheres Fabricated by Lipopolymer Hybrids for Tumor-Targeted<br>Photodynamic Therapy. Biomacromolecules, 2016, 17, 20-31.                                          | 2.6         | 34                          |
| 29 | Trigonelline protects the cardiocyte from hydrogen peroxide induced apoptosis in H9c2 cells. Asian<br>Pacific Journal of Tropical Medicine, 2015, 8, 263-268.                                            | 0.4         | 33                          |
| 30 | Anti-tumor activity of all-trans retinoic acid-incorporated glycol chitosan nanoparticles against<br>HuCC-T1 human cholangiocarcinoma cells. International Journal of Pharmaceutics, 2012, 422, 454-461. | 2.6         | 32                          |
| 31 | Characterization and preparation of core–shell type nanoparticle for encapsulation of anticancer drug. Colloids and Surfaces B: Biointerfaces, 2010, 81, 530-536.                                        | 2.5         | 31                          |
| 32 | Antitumor activity of adriamycin-incorporated polymeric micelles of poly( $\hat{I}^3$ -benzyl) Tj ETQq0 0 0 rgBT /Overlock $\hat{I}$                                                                     | 10 Tf 50 22 | 22 Td (l-gluta $_{30}^{10}$ |
| 33 | All-trans retinoic acid release from polyion-complex micelles of methoxy poly(ethylene glycol) grafted chitosan. Journal of Applied Polymer Science, 2007, 105, 3246-3254.                               | 1.3         | 29                          |
| 34 | Methotrexate-incorporated polymeric micelles composed of methoxy poly(ethylene glycol)-grafted chitosan. Macromolecular Research, 2009, 17, 538-543.                                                     | 1.0         | 29                          |
| 35 | 5-aminolevulinic acid-incorporated poly(vinyl alcohol) nanofiber-coated metal stent for application<br>in photodynamic therapy. International Journal of Nanomedicine, 2012, 7, 1997.                    | 3.3         | 29                          |

36Preclinical evaluation of sorafenib-eluting stent for suppression of human cholangiocarcinoma3.32936cells. International Journal of Nanomedicine, 2013, 8, 1697.3.329

Young-IL Jeong

| #  | Article                                                                                                                                                                                                                    | IF       | CITATIONS       |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|
| 37 | All-trans retinoic acid-associated low molecular weight water-soluble chitosan nanoparticles based<br>on ion complex. Macromolecular Research, 2006, 14, 66-72.                                                            | 1.0      | 27              |
| 38 | Combinatorial Effect of Cold Atmosphere Plasma (CAP) and the Anticancer Drug Cisplatin on Oral<br>Squamous Cell Cancer Therapy. International Journal of Molecular Sciences, 2020, 21, 7646.                               | 1.8      | 26              |
| 39 | Redox- and pH-Responsive Nanoparticles Release Piperlongumine in a Stimuli-Sensitive Manner to<br>Inhibit Pulmonary Metastasis of Colorectal Carcinoma Cells. Journal of Pharmaceutical Sciences,<br>2018, 107, 2702-2712. | 1.6      | 25              |
| 40 | Insulin-incorporated chitosan nanoparticles based on polyelectrolyte complex formation.<br>Macromolecular Research, 2010, 18, 630-635.                                                                                     | 1.0      | 24              |
| 41 | Dextran-b-poly(L-histidine) copolymer nanoparticles for pH-responsive drug delivery to tumor cells.<br>International Journal of Nanomedicine, 2013, 8, 3197.                                                               | 3.3      | 24              |
| 42 | Biocompatible and pH-sensitive PEG hydrogels with degradable phosphoester and phosphoamide<br>linkers end-capped with amine for controlled drug delivery. Polymer Chemistry, 2013, 4, 1084-1094.                           | 1.9      | 23              |
| 43 | Simple nanophotosensitizer fabrication using water-soluble chitosan for photodynamic therapy in gastrointestinal cancer cells. International Journal of Pharmaceutics, 2017, 532, 194-203.                                 | 2.6      | 23              |
| 44 | Hybrid nanoparticles based on chlorin e6-conjugated hyaluronic acid/poly( <scp>l</scp> -histidine)<br>copolymer for theranostic application to tumors. Journal of Materials Chemistry B, 2018, 6, 2851-2859.               | 2.9      | 23              |
| 45 | Caffeic acid-conjugated chitosan derivatives and their anti-tumor activity. Archives of Pharmacal Research, 2013, 36, 1437-1446.                                                                                           | 2.7      | 22              |
| 46 | Effect of surfactant on 5-aminolevulinic acid uptake and PpIX generation in human<br>cholangiocarcinoma cell. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80, 453-458.                                   | 2.0      | 19              |
| 47 | Paclitaxel-incorporated nanoparticles using block copolymers composed of poly(ethylene) Tj ETQq1 1 0.784314                                                                                                                | rgBT/Ove | erlock 10 Tf 50 |
| 48 | Stimuli-Responsive Drug Delivery of Doxorubicin Using Magnetic Nanoparticle Conjugated<br>Poly(ethylene glycol)-g-Chitosan Copolymer. International Journal of Molecular Sciences, 2021, 22,<br>13169.                     | 1.8      | 19              |
| 49 | Vorinostat-eluting poly(DL-lactide-co-glycolide) nanofiber-coated stent for inhibition of<br>cholangiocarcinoma cells. International Journal of Nanomedicine, 2017, Volume 12, 7669-7680.                                  | 3.3      | 17              |
| 50 | Synergistic effect of buthionine sulfoximine on the chlorin e6-based photodynamic treatment of cancer cells. Archives of Pharmacal Research, 2019, 42, 990-999.                                                            | 2.7      | 17              |
| 51 | Magnetically Responsive Drug Delivery Using Doxorubicin and Iron Oxide Nanoparticle-Incorporated<br>Lipocomplexes. Journal of Nanoscience and Nanotechnology, 2019, 19, 675-679.                                           | 0.9      | 16              |
| 52 | Synergistic Anticancer Effects of Vorinostat and Epigallocatechin-3-Gallate against HuCC-T1 Human<br>Cholangiocarcinoma Cells. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-11.                    | 0.5      | 13              |
| 53 | Synergistic effects of 5-aminolevulinic acid based photodynamic therapy and celecoxib via oxidative stress in human cholangiocarcinoma cells. International Journal of Nanomedicine, 2013, 8, 2173.                        | 3.3      | 13              |
| 54 | Aminolevulinic acid derivatives-based photodynamic therapy in human intra- and extrahepatic cholangiocarcinoma cells. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 503-510.                           | 2.0      | 12              |

YOUNG-IL JEONG

| #  | Article                                                                                                                                                                                                                                                                               | IF                 | CITATIONS      |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|
| 55 | Anticancer activity of streptochlorin, a novel antineoplastic agent, in cholangiocarcinoma. Drug<br>Design, Development and Therapy, 2015, 9, 2201.                                                                                                                                   | 2.0                | 12             |
| 56 | Piperlongumine-Eluting Gastrointestinal Stent Using Reactive Oxygen Species-Sensitive Nanofiber Mats<br>for Inhibition of Cholangiocarcinoma Cells. Nanoscale Research Letters, 2019, 14, 58.                                                                                         | 3.1                | 12             |
| 57 | CD44 Receptor–Specific and Redox-Sensitive Nanophotosensitizers of Hyaluronic Acid–Chlorin e6<br>Tetramer Having Diselenide Linkages for Photodynamic Treatment of Cancer Cells. Journal of<br>Pharmaceutical Sciences, 2019, 108, 3713-3722.                                         | 1.6                | 12             |
| 58 | Hyaluronic Acid-Conjugated with Hyperbranched Chlorin e6 Using Disulfide Linkage and Its<br>Nanophotosensitizer for Enhanced Photodynamic Therapy of Cancer Cells. Materials, 2019, 12, 3080.                                                                                         | 1.3                | 12             |
| 59 | All-trans retinoic acid release from surfactant-free nanoparticles of poly(DL-lactide-co-glycolide).<br>Macromolecular Research, 2008, 16, 717-724.                                                                                                                                   | 1.0                | 11             |
| 60 | Enhanced Photosensing and Photodynamic Treatment of Colon Cancer Cells Using Methoxy<br>Poly(ethylene glycol)-Conjugated Chlorin e6. Journal of Nanoscience and Nanotechnology, 2018, 18,<br>1131-1136.                                                                               | 0.9                | 11             |
| 61 | Synthesis of methoxy poly(ethylene glycol)- b -poly( dl -lactide- co -glycolide) copolymer via diselenide<br>linkage and fabrication of ebselen-incorporated nanoparticles for radio-responsive drug delivery.<br>Journal of Industrial and Engineering Chemistry, 2017, 47, 112-120. | 2.9                | 10             |
| 62 | Caffeic Acid Phenethyl Ester-Incorporated Radio-Sensitive Nanoparticles of Phenylboronic Acid<br>Pinacol Ester-Conjugated Hyaluronic Acid for Application in Radioprotection. International Journal<br>of Molecular Sciences, 2021, 22, 6347.                                         | 1.8                | 10             |
| 63 | Redox-Sensitive and Folate-Receptor-Mediated Targeting of Cervical Cancer Cells for Photodynamic<br>Therapy Using Nanophotosensitizers Composed of Chlorin e6-Conjugated β-Cyclodextrin via Diselenide<br>Linkage. Cells, 2021, 10, 2190.                                             | 1.8                | 10             |
| 64 | Hair dye-incorporated poly-γ-glutamic acid/glycol chitosan nanoparticles based on ion-complex formation. International Journal of Nanomedicine, 2011, 6, 2879.                                                                                                                        | 3.3                | 9              |
| 65 | Delivery of Transferrin-Conjugated Polysaccharide Nanoparticles in 9L Gliosacoma Cells. Journal of<br>Nanoscience and Nanotechnology, 2015, 15, 125-129.                                                                                                                              | 0.9                | 9              |
| 66 | Redox-Responsive Nanophotosensitizer Composed of Chlorin e6-Conjugated Dextran for<br>Photodynamic Treatment of Colon Cancer Cells. Journal of Nanomaterials, 2016, 2016, 1-12.                                                                                                       | 1.5                | 9              |
| 67 | Superior absorption and retention properties of foam-film silver dressing versus other commercially available silver dressing. Biomaterials Research, 2016, 20, 22.                                                                                                                   | 3.2                | 9              |
| 68 | Redoxâ€Responsive Nanocomposites Composed of Graphene Oxide and Chlorin e6 for Photodynamic<br>Treatment of Cholangiocarcinoma. Bulletin of the Korean Chemical Society, 2018, 39, 1073-1082.                                                                                         | 1.0                | 9              |
| 69 | <p>Enhancing Radiotherapeutic Effect With Nanoparticle-Mediated Radiosensitizer Delivery<br/>Guided By Focused Gamma Rays In Lewis Lung Carcinoma-Bearing Mouse Brain Tumor Models</p> .<br>International Journal of Nanomedicine, 2019, Volume 14, 8861-8874.                        | 3.3                | 9              |
| 70 | Defensive mechanism in cholangiocarcinoma cells against oxidative stress induced by chlorin<br>e6-based photodynamic therapy. Drug Design, Development and Therapy, 2014, 8, 1451.                                                                                                    | 2.0                | 8              |
| 71 | Ciprofloxacin-Releasing ROS-Sensitive Nanoparticles Composed of Poly(Ethylene) Tj ETQq1 1 0.784314 rgBT /                                                                                                                                                                             | Overlock 10<br>1.3 | ) Tf 50 102 To |
| 72 | CD44 Receptor-Mediated/Reactive Oxygen Species-Sensitive Delivery of Nanophotosensitizers against<br>Cervical Cancer Cells. International Journal of Molecular Sciences. 2022, 23, 3594.                                                                                              | 1.8                | 8              |

Young-IL Jeong

| #  | Article                                                                                                                                                                                                                                                                                                         | IF              | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|
| 73 | Nano-Self Assembled Photosensitizer Composed of Methoxy Poly(ethylene glycol)-Conjugated Chlorin<br>e6 for Enhanced Photosensing of HCT116 Cells. Journal of Nanoscience and Nanotechnology, 2016, 16,<br>1379-1383.                                                                                            | 0.9             | 7         |
| 74 | Chlorin e6-Conjugated and PEGylated Immune Checkpoint Inhibitor Nanocomposites for Pulmonary<br>Metastatic Colorectal Cancer. ACS Omega, 2019, 4, 18593-18599.                                                                                                                                                  | 1.6             | 7         |
| 75 | Reactive oxygen species-sensitive nanophotosensitizers of aminophenyl boronic acid pinacol ester conjugated chitosan- <i>g</i> -methoxy poly(ethylene glycol) copolymer for photodynamic treatment of cancer. Biomedical Materials (Bristol), 2020, 15, 055034.                                                 | 1.7             | 7         |
| 76 | Antimetastatic Activity of Gallic Acidâ€conjugated Chitosan against Pulmonary Metastasis of Colon<br>Carcinoma Cells. Bulletin of the Korean Chemical Society, 2018, 39, 90-96.                                                                                                                                 | 1.0             | 6         |
| 77 | Potential Sustainable Properties of Microencapsulated Endophytic Lactic Acid Bacteria (KCC-42) in <i>In-Vitro</i> Simulated Gastrointestinal Juices and Their Fermentation Quality of Radish Kimchi. BioMed<br>Research International, 2018, 2018, 1-10.                                                        | 0.9             | 6         |
| 78 | Surfactant-free nanoparticles of doxorubicin-conjugated poly(DL-lactide-co-glycolide).<br>Macromolecular Research, 2010, 18, 1115-1120.                                                                                                                                                                         | 1.0             | 5         |
| 79 | Anticancer effect of intracellular-delivered paclitaxel using novel pH-sensitive LMWSC-PCL di-block copolymer micelles. Journal of Industrial and Engineering Chemistry, 2019, 70, 136-144.                                                                                                                     | 2.9             | 5         |
| 80 | Nanophotosensitizers for Folate Receptor-Targeted and Redox-Sensitive Delivery of Chlorin E6 against<br>Cancer Cells. Materials, 2020, 13, 2810.                                                                                                                                                                | 1.3             | 5         |
| 81 | Release of tissue inhibitor of metalloproteinase-2 from alginate microcapsule encapsulating genetically engineered cells. International Journal of Nanomedicine, 2013, 8, 4351.                                                                                                                                 | 3.3             | 4         |
| 82 | Redox and CD44 Dualâ€Responsive Nanophotosensitizer Composed of Chlorin e6â€Conjugated Hyaluronic<br>Acid via Disulfide Linkage for Targeted Photodynamic Treatment of Cancer Cells. Bulletin of the<br>Korean Chemical Society, 2019, 40, 439-445.                                                             | 1.0             | 4         |
| 83 | The Effect of Oxidative Stress and Memantine-Incorporated Reactive Oxygen Species-Sensitive<br>Nanoparticles on the Expression of N-Methyl-d-aspartate Receptor Subunit 1 in Brain Cancer Cells for<br>Alzheimer's Disease Application. International Journal of Molecular Sciences, 2021, 22, 12309.           | 1.8             | 4         |
| 84 | Cisplatin-Incorporated Nanoparticles of Methoxy Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 307 Td (gl<br>and Nanotechnology, 2014, 14, 6256-6260.                                                                                                                                                      | ycol)-<1<br>0.9 | >b3       |
| 85 | Cell specific doxorubicin delivery through the temperature responsive lipopolymer nanocarriers<br>engineered by the combination of RAFT polymerization and click chemistry. Journal of Controlled<br>Release, 2015, 213, e59.                                                                                   | 4.8             | 3         |
| 86 | Microencapsulation of endophytic LAB (KCC-41) and its probiotic and fermentative potential for cabbage kimchi. International Microbiology, 2019, 22, 121-130.                                                                                                                                                   | 1.1             | 3         |
| 87 | Reactive Oxygen Species and Folate Receptor-Targeted Nanophotosensitizers Composed of Folic<br>Acid-Conjugated and Poly(ethylene glycol)-Chlorin e6 Tetramer Having Diselenide Linkages for<br>Targeted Photodynamic Treatment of Cancer Cells. International Journal of Molecular Sciences, 2022,<br>23, 3117. | 1.8             | 3         |
| 88 | Reactive Oxygen Species-Sensitive Nanophotosensitizers of Methoxy Poly(ethylene glycol)-Chlorin<br>e6/Phenyl Boronic Acid Pinacol Ester Conjugates Having Diselenide Linkages for Photodynamic Therapy<br>of Cervical Cancer Cells. Materials, 2022, 15, 138.                                                   | 1.3             | 3         |
| 89 | pH and Redox-Dual Sensitive Chitosan Nanoparticles Having Methyl Ester and Disulfide Linkages for Drug Targeting against Cholangiocarcinoma Cells. Materials, 2022, 15, 3795.                                                                                                                                   | 1.3             | 2         |