

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7100465/publications.pdf Version: 2024-02-01

HONCL

#	Article	lF	CITATIONS
1	Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction–diffusion problem. Computers and Mathematics With Applications, 2015, 70, 573-591.	2.7	129
2	A mixed finite element method for a time-fractional fourth-order partial differential equation. Applied Mathematics and Computation, 2014, 243, 703-717.	2.2	119
3	A two-grid mixed finite element method for a nonlinear fourth-order reaction–diffusion problem with time-fractional derivative. Computers and Mathematics With Applications, 2015, 70, 2474-2492.	2.7	116
4	A two-grid finite element approximation for a nonlinear time-fractional Cable equation. Nonlinear Dynamics, 2016, 85, 2535-2548.	5.2	94
5	Some second-order ? schemes combined with finite element method for nonlinear fractional cable equation. Numerical Algorithms, 2019, 80, 533-555.	1.9	66
6	Fast algorithm based on TT-M FE system for space fractional Allen–Cahn equations with smooth and non-smooth solutions. Journal of Computational Physics, 2019, 379, 351-372.	3.8	58
7	Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation. Journal of Computational Physics, 2017, 344, 108-126.	3.8	56
8	High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation. Computers and Mathematics With Applications, 2017, 73, 1298-1314.	2.7	51
9	Time two-mesh algorithm combined with finite element method for time fractional water wave model. International Journal of Heat and Mass Transfer, 2018, 120, 1132-1145.	4.8	46
10	An \$\$H^1\$\$ H 1 -Galerkin mixed finite element method for time fractional reaction–diffusion equation. Journal of Applied Mathematics and Computing, 2015, 47, 103-117.	2.5	45
11	-Galerkin mixed finite element methods for pseudo-hyperbolic equations. Applied Mathematics and Computation, 2009, 212, 446-457.	2.2	38
12	Time second-order finite difference/finite element algorithm for nonlinear time-fractional diffusion problem with fourth-order derivative term. Computers and Mathematics With Applications, 2018, 75, 3521-3536.	2.7	38
13	Finite element method combined with second-order time discrete scheme for nonlinear fractional Cable equation. European Physical Journal Plus, 2016, 131, 1.	2.6	37
14	A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations. Applied Mathematics and Computation, 2020, 368, 124799.	2.2	33
15	Second-order approximation scheme combined with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si52.gif" display="inline" overflow="scroll"><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn>1MFE method for nonlinear time fractional convection–diffusion equation. Computers and</mml:mn></mml:mrow></mml:msup></mml:math 	ml:n 2:17 > <td>nml<mark>3ז</mark>row> <</td>	nml <mark>3ז</mark> row> <
16	Mathematics With Applications, 2017, 79, 1102-1106. A reduced FVE formulation based on POD method and error analysis for two-dimensional viscoelastic problem. Journal of Mathematical Analysis and Applications, 2012, 385, 310-321.	1.0	30
17	Reduced-order extrapolation spectral-finite difference scheme based on POD method and error estimation for three-dimensional parabolic equation. Frontiers of Mathematics in China, 2015, 10, 1025-1040.	0.7	27
18	A new fully discrete finite difference/element approximation for fractional cable equation. Journal of Applied Mathematics and Computing, 2016, 52, 345-361.	2.5	27

#	Article	IF	CITATIONS
19	Finite Element Methods Based on Two Families of Second-Order Numerical Formulas for the Fractional Cable Model with Smooth Solutions. Journal of Scientific Computing, 2020, 84, 1.	2.3	25
20	Fast second-order time two-mesh mixed finite element method for a nonlinear distributed-order sub-diffusion model. Numerical Algorithms, 2021, 88, 523-553.	1.9	23
21	A class of efficient time-stepping methods for multi-term time-fractional reaction-diffusion-wave equations. Applied Numerical Mathematics, 2021, 165, 56-82.	2.1	21
22	TT-M finite element algorithm for a two-dimensional space fractional Gray–Scott model. Computers and Mathematics With Applications, 2020, 80, 1793-1809.	2.7	19
23	Highâ€order local discontinuous Galerkin method for a fractal mobile/immobile transport equation with the Caputo–Fabrizio fractional derivative. Numerical Methods for Partial Differential Equations, 2019, 35, 1588-1612.	3.6	18
24	Necessity of introducing non-integer shifted parameters by constructing high accuracy finite difference algorithms for a two-sided space-fractional advection–diffusion model. Applied Mathematics Letters, 2020, 105, 106347.	2.7	18
25	Analysis of mixed finite element methods for fourth-order wave equations. Computers and Mathematics With Applications, 2013, 65, 1-16.	2.7	17
26	A novel finite element method for the distributed-order time fractional Cable equation in two dimensions. Computers and Mathematics With Applications, 2020, 80, 923-939.	2.7	17
27	The Unified Theory of Shifted Convolution Quadrature for Fractional Calculus. Journal of Scientific Computing, 2021, 89, 1.	2.3	17
28	Mixed element algorithm based on a second-order time approximation scheme for a two-dimensional nonlinear time fractional coupled sub-diffusion model. Engineering With Computers, 2022, 38, 51-68.	6.1	17
29	The Space-Time Finite Element Method for Parabolic Problems. Applied Mathematics and Mechanics (English Edition), 2001, 22, 687-700.	3.6	16
30	Splitting positive definite mixed element methods for pseudoâ€hyperbolic equations. Numerical Methods for Partial Differential Equations, 2012, 28, 670-688.	3.6	15
31	A new space–time continuous Galerkin method with mesh modification for Sobolev equations. Journal of Mathematical Analysis and Applications, 2016, 440, 86-105.	1.0	15
32	A reduced-order LSMFE formulation based on POD method and implementation of algorithm for parabolic equations. Finite Elements in Analysis and Design, 2012, 60, 1-12.	3.2	14
33	A Crank–Nicolson Finite Volume Element Method for Time Fractional Sobolev Equations on Triangular Grids. Mathematics, 2020, 8, 1591.	2.2	13
34	An oscillation-free high order TVD/CBC-based upwind scheme for convection discretization. Numerical Algorithms, 2012, 59, 29-50.	1.9	12
35	Fast algorithm based on the novel approximation formula for the Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2020, 5, 1729-1744.	1.6	12
36	Mixed time discontinuous space-time finite element method for convection diffusion equations. Applied Mathematics and Mechanics (English Edition), 2008, 29, 1579-1586.	3.6	11

#	Article	IF	CITATIONS
37	Time discontinuous Galerkin space-time finite element method for nonlinear Sobolev equations. Frontiers of Mathematics in China, 2013, 8, 825-836.	0.7	11
38	Crank–Nicolson WSGI difference scheme with finite element method for multi-dimensional time-fractional wave problem. Computational and Applied Mathematics, 2018, 37, 5126-5145.	1.3	11
39	A Mixed Finite Volume Element Method for Time-Fractional Reaction-Diffusion Equations on Triangular Grids. Mathematics, 2019, 7, 600.	2.2	11
40	Reduced-order finite element method based on POD for fractional Tricomi-type equation. Applied Mathematics and Mechanics (English Edition), 2016, 37, 647-658.	3.6	10
41	Crank–Nicolson Finite Element Scheme and Modified Reduced-Order Scheme for Fractional Sobolev Equation. Numerical Functional Analysis and Optimization, 2018, 39, 1635-1655.	1.4	10
42	Finite volume element method with the WSGD formula for nonlinear fractional mobile/immobile transport equations. Advances in Difference Equations, 2020, 2020, .	3.5	10
43	A two-grid mixed finite volume element method for nonlinear time fractional reaction-diffusion equations. AIMS Mathematics, 2022, 7, 1941-1970.	1.6	10
44	A New Mixed Element Method for a Class of Time-Fractional Partial Differential Equations. Scientific World Journal, The, 2014, 2014, 1-8.	2.1	9
45	A reduced-order FVE extrapolation algorithm based on proper orthogonal decomposition technique and its error analysis for Sobolev equation. Japan Journal of Industrial and Applied Mathematics, 2015, 32, 119-142.	0.9	9
46	Analysis of a space–time continuous Galerkin method for convection-dominated Sobolev equations. Computers and Mathematics With Applications, 2017, 73, 1643-1656.	2.7	9
47	Efficient shifted fractional trapezoidal rule for subdiffusion problems with nonsmooth solutions on uniform meshes. BIT Numerical Mathematics, 2022, 62, 631-666.	2.0	9
48	An expanded mixed covolume method for sobolev equation with convection term on triangular grids. Numerical Methods for Partial Differential Equations, 2013, 29, 1257-1277.	3.6	8
49	Fast calculation based on a spatial twoâ€grid finite element algorithm for a nonlinear space–time fractional diffusion model. Numerical Methods for Partial Differential Equations, 2020, 36, 1904-1921.	3.6	7
50	Numerical simulations based on shifted second-order difference/finite element algorithms for the time fractional Maxwell's system. Engineering With Computers, 2022, 38, 191-205.	6.1	7
51	Numerical Solution of Burgers' Equation Based on Mixed Finite Volume Element Methods. Discrete Dynamics in Nature and Society, 2020, 2020, 1-13.	0.9	7
52	Some Second-Order Ïf Schemes Combined with an H1-Galerkin MFE Method for a Nonlinear Distributed-Order Sub-Diffusion Equation. Mathematics, 2020, 8, 187.	2.2	7
53	Approximation methods for the distributed order calculus using the convolution quadrature. Discrete and Continuous Dynamical Systems - Series B, 2021, 26, 1447-1468.	0.9	7
54	Mixed finite element algorithm for a nonlinear time fractional wave model. Mathematics and Computers in Simulation, 2021, 188, 60-76.	4.4	7

#	Article	IF	CITATIONS
55	Splitting positive definite mixed element method for viscoelasticity wave equation. Frontiers of Mathematics in China, 2012, 7, 725-742.	0.7	6
56	An unstructured finite volume projection method for pulsatile flows through an asymmetric stenosis. Journal of Engineering Mathematics, 2012, 72, 125-140.	1.2	6
57	Application of low-dimensional finite element method to fractional diffusion equation. International Journal of Modeling, Simulation, and Scientific Computing, 2014, 05, 1450022.	1.4	6
58	A Padé compact high-order finite volume scheme for nonlinear Schrödinger equations. Applied Numerical Mathematics, 2014, 85, 115-127.	2.1	6
59	Fully discrete two-step mixed element method for the symmetric regularized long wave equation. International Journal of Modeling, Simulation, and Scientific Computing, 2014, 05, 1450007.	1.4	6
60	A new expanded mixed method for parabolic integro-differential equations. Applied Mathematics and Computation, 2015, 259, 600-613.	2.2	6
61	A spaceâ€time continuous Galerkin method with mesh modification for viscoelastic wave equations. Numerical Methods for Partial Differential Equations, 2017, 33, 1183-1207.	3.6	6
62	A continuous Galerkin method for pseudo-hyperbolic equations with variable coefficients. Journal of Mathematical Analysis and Applications, 2019, 473, 1053-1072.	1.0	6
63	Analysis of a continuous Galerkin method with mesh modification for two-dimensional telegraph equation. Computers and Mathematics With Applications, 2020, 79, 588-602.	2.7	6
64	Local discontinuous Galerkin method based on a family of second-order time approximation schemes for fractional mobile/immobile convection-diffusion equations. Applied Numerical Mathematics, 2022, 179, 149-169.	2.1	6
65	Numerical solutions to regularized long wave equation based on mixed covolume method. Applied Mathematics and Mechanics (English Edition), 2013, 34, 907-920.	3.6	5
66	A coupling method based on new MFE and FE for fourth-order parabolic equation. Journal of Applied Mathematics and Computing, 2013, 43, 249-269.	2.5	5
67	TT-M FE method for a 2D nonlinear time distributed-order and space fractional diffusion equation. Mathematics and Computers in Simulation, 2021, 181, 117-137.	4.4	5
68	Fourth-order compact difference schemes for the two-dimensional nonlinear fractional mobile/immobile transport models. Computers and Mathematics With Applications, 2021, 100, 1-10.	2.7	5
69	Local discontinuous Galerkin method combined with the L2 formula for the time fractional Cable model. Journal of Applied Mathematics and Computing, 2022, 68, 4457-4478.	2.5	5
70	A New Positive Definite Expanded Mixed Finite Element Method for Parabolic Integrodifferential Equations. Journal of Applied Mathematics, 2012, 2012, 1-24.	0.9	4
71	TGMFE algorithm combined with some time second-order schemes for nonlinear fourth-order reaction diffusion system. Results in Applied Mathematics, 2019, 4, 100080.	1.3	4
72	High-Order Local Discontinuous Galerkin Algorithm with Time Second-Order Schemes for the Two-Dimensional Nonlinear Fractional Diffusion Equation. Communications on Applied Mathematics and Computation, 2020, 2, 613-640.	1.7	4

#	Article	IF	CITATIONS
73	A space-time spectral method for multi-dimensional Sobolev equations. Journal of Mathematical Analysis and Applications, 2021, 499, 124937.	1.0	4
74	Efficient numerical algorithm with the second-order time accuracy for a two-dimensional nonlinear fourth-order fractional wave equation. Results in Applied Mathematics, 2022, 14, 100264.	1.3	4
75	A Coupling Method of New EMFE and FE for Fourth-Order Partial Differential Equation of Parabolic Type. Advances in Mathematical Physics, 2013, 2013, 1-14.	0.8	3
76	A New Linearized Crank-Nicolson Mixed Element Scheme for the Extended Fisher-Kolmogorov Equation. Scientific World Journal, The, 2013, 2013, 1-11.	2.1	3
77	Finite volume element methods for two-dimensional time fractional reaction–diffusion equations on triangular grids. Applicable Analysis, 2023, 102, 2248-2270.	1.3	3
78	Second-Order Time Stepping Scheme Combined with a Mixed Element Method for a 2D Nonlinear Fourth-Order Fractional Integro-Differential Equations. Fractal and Fractional, 2022, 6, 201.	3.3	3
79	A Time Two-Mesh Compact Difference Method for the One-Dimensional Nonlinear Schrödinger Equation. Entropy, 2022, 24, 806.	2.2	3
80	TT-M Finite Element Algorithm for the Coupled Schrödinger–Boussinesq Equations. Axioms, 2022, 11, 314.	1.9	3
81	A Novel Characteristic Expanded Mixed Method for Reaction-Convection-Diffusion Problems. Journal of Applied Mathematics, 2013, 2013, 1-11.	0.9	2
82	A MFE method combined with L1-approximation for a nonlinear time-fractional coupled diffusion system. International Journal of Modeling, Simulation, and Scientific Computing, 2017, 08, 1750012.	1.4	2
83	A Mixed Element Algorithm Based on the Modified L1 Crank–Nicolson Scheme for a Nonlinear Fourth-Order Fractional Diffusion-Wave Model. Fractal and Fractional, 2021, 5, 274.	3.3	2
84	A splitting mixed space-time discontinuous Galerkin method for parabolic problems. Procedia Engineering, 2012, 31, 1050-1059.	1.2	1
85	H 1 space-time discontinuous finite element method for convection-diffusion equations. Applied Mathematics and Mechanics (English Edition), 2013, 34, 371-384.	3.6	1
86	An expanded mixed covolume element method for integro-differential equation of Sobolev type on triangular grids. Advances in Difference Equations, 2017, 2017, .	3.5	1
87	A Splitting Mixed Covolume Method for Viscoelastic Wave Equations on Triangular Grids. Mediterranean Journal of Mathematics, 2020, 17, 1.	0.8	1
88	Numerical analysis of a continuous Galerkin method for damped <scp>sineâ€Gordon</scp> equation. Numerical Methods for Partial Differential Equations, 2020, 36, 1369-1388.	3.6	1
89	The study of a continuous Galerkin method for Sobolev equation with space-time variable coefficients. Applied Mathematics and Computation, 2021, 401, 126021.	2.2	1
90	FINITE DIFFERENCE/ <i>H</i> ¹ -GALERKIN MFE PROCEDURE FOR A FRACTIONAL WATER WAVE MODEL. Journal of Applied Analysis and Computation, 2016, 6, 409-428.	0.5	1

#	Article	IF	CITATIONS
91	FINITE ELEMENT ALGORITHM BASED ON HIGH-ORDER TIME APPROXIMATION FOR TIME FRACTIONAL CONVECTION-DIFFUSION EQUATION. Journal of Applied Analysis and Computation, 2018, 8, 229-249.	0.5	1
92	Efficient time second-order SCQ formula combined with a mixed element method for a nonlinear time fractional wave model. Electronic Research Archive, 2022, 30, 440-458.	0.9	1
93	A space-time finite element method based on local projection stabilization in space and discontinuous Galerkin method in time for convection-diffusion-reaction equations. Applied Mathematics and Computation, 2021, 397, 125937.	2.2	0