
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7100450/publications.pdf Version: 2024-02-01



FUUN DENC

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A Control Method for Voltage Balancing in Modular Multilevel Converters. IEEE Transactions on Power Electronics, 2014, 29, 66-76.                                                                                           | 5.4 | 262       |
| 2  | Fault Detection and Localization Method for Modular Multilevel Converters. IEEE Transactions on Power Electronics, 2015, 30, 2721-2732.                                                                                     | 5.4 | 212       |
| 3  | Fault-Tolerant Approach for Modular Multilevel Converters Under Submodule Faults. IEEE<br>Transactions on Industrial Electronics, 2016, 63, 7253-7263.                                                                      | 5.2 | 118       |
| 4  | Control of Improved Full-Bridge Three-Level DC/DC Converter for Wind Turbines in a DC Grid. IEEE Transactions on Power Electronics, 2013, 28, 314-324.                                                                      | 5.4 | 109       |
| 5  | Virtual Damping Flux-Based LVRT Control for DFIG-Based Wind Turbine. IEEE Transactions on Energy Conversion, 2015, 30, 714-725.                                                                                             | 3.7 | 97        |
| 6  | Overview on submodule topologies, modeling, modulation, control schemes, fault diagnosis, and<br>tolerant control strategies of modular multilevel converters. Chinese Journal of Electrical<br>Engineering, 2020, 6, 1-21. | 2.3 | 94        |
| 7  | Voltage-Balancing Method for Modular Multilevel Converters Switched at Grid Frequency. IEEE<br>Transactions on Industrial Electronics, 2015, 62, 2835-2847.                                                                 | 5.2 | 92        |
| 8  | Voltage-Balancing Method for Modular Multilevel Converters Under Phase-Shifted Carrier-Based<br>Pulsewidth Modulation. IEEE Transactions on Industrial Electronics, 2015, 62, 4158-4169.                                    | 5.2 | 90        |
| 9  | A Wireless Power Transfer System With Dual Switch-Controlled Capacitors for Efficiency Optimization. IEEE Transactions on Power Electronics, 2020, 35, 6091-6101.                                                           | 5.4 | 85        |
| 10 | Operation and Control of a DC-Grid Offshore Wind Farm Under DC Transmission System Faults. IEEE<br>Transactions on Power Delivery, 2013, 28, 1356-1363.                                                                     | 2.9 | 77        |
| 11 | Design of Protective Inductors for HVDC Transmission Line Within DC Grid Offshore Wind Farms. IEEE Transactions on Power Delivery, 2013, 28, 75-83.                                                                         | 2.9 | 70        |
| 12 | Integration of Large Photovoltaic and Wind System by Means of Smart Transformer. IEEE Transactions<br>on Industrial Electronics, 2017, 64, 8928-8938.                                                                       | 5.2 | 58        |
| 13 | Reference Submodule Based Capacitor Monitoring Strategy for Modular Multilevel Converters. IEEE<br>Transactions on Power Electronics, 2019, 34, 4711-4721.                                                                  | 5.4 | 57        |
| 14 | Dual-Loop Control Strategy for DFIG-Based Wind Turbines Under Grid Voltage Disturbances. IEEE<br>Transactions on Power Electronics, 2016, 31, 2239-2253.                                                                    | 5.4 | 46        |
| 15 | Fault Localization Strategy for Modular Multilevel Converters Under Submodule Lower Switch<br>Open-Circuit Fault. IEEE Transactions on Power Electronics, 2020, 35, 5190-5204.                                              | 5.4 | 46        |
| 16 | Five-Level Active-Neutral-Point-Clamped DC/DC Converter for Medium-Voltage DC Grids. IEEE<br>Transactions on Power Electronics, 2017, 32, 3402-3412.                                                                        | 5.4 | 40        |
| 17 | Triangle Carrier-Based DPWM for Three-Level NPC Inverters. IEEE Journal of Emerging and Selected<br>Topics in Power Electronics, 2018, 6, 1966-1978.                                                                        | 3.7 | 39        |
| 18 | Power Losses Control for Modular Multilevel Converters Under Capacitor Deterioration. IEEE<br>Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 4318-4332.                                             | 3.7 | 37        |

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | An Impedance-Based Stability Assessment Methodology for DC Distribution Power System With Multivoltage Levels. IEEE Transactions on Power Electronics, 2020, 35, 4033-4047.                                                                         | 5.4 | 37        |
| 20 | Crossing Thyristor Branches-Based Hybrid Modular Multilevel Converters for DC Line Faults. IEEE Transactions on Industrial Electronics, 2021, 68, 9719-9730.                                                                                        | 5.2 | 37        |
| 21 | Input-Parallel Output-Parallel Three-Level DC/DC Converters With Interleaving Control Strategy for<br>Minimizing and Balancing Capacitor Ripple Currents. IEEE Journal of Emerging and Selected Topics in<br>Power Electronics, 2017, 5, 1122-1132. | 3.7 | 36        |
| 22 | A Currentless Submodule Individual Voltage Balancing Control for Modular Multilevel Converters.<br>IEEE Transactions on Industrial Electronics, 2020, 67, 9370-9382.                                                                                | 5.2 | 36        |
| 23 | Capacitor ESR and <i>C</i> Monitoring in Modular Multilevel Converters. IEEE Transactions on Power Electronics, 2020, 35, 4063-4075.                                                                                                                | 5.4 | 34        |
| 24 | Elimination of DC-Link Current Ripple for Modular Multilevel Converters With Capacitor<br>Voltage-Balancing Pulse-Shifted Carrier PWM. IEEE Transactions on Power Electronics, 2015, 30,<br>284-296.                                                | 5.4 | 33        |
| 25 | Suppression of DC-Link Current Ripple for Modular Multilevel Converters Under Phase-Disposition PWM. IEEE Transactions on Power Electronics, 2020, 35, 3310-3324.                                                                                   | 5.4 | 33        |
| 26 | Protection Scheme for Modular Multilevel Converters Under Diode Open-Circuit Faults. IEEE<br>Transactions on Power Electronics, 2018, 33, 2866-2877.                                                                                                | 5.4 | 32        |
| 27 | Active Power and DC Voltage Coordinative Control for Cascaded DC–AC Converter With<br>Bidirectional Power Application. IEEE Transactions on Power Electronics, 2015, 30, 5911-5925.                                                                 | 5.4 | 31        |
| 28 | Accurate Calculation and Sensitivity Analysis of Leakage Inductance of High-Frequency Transformer<br>With Litz Wire Winding. IEEE Transactions on Power Electronics, 2020, 35, 3951-3962.                                                           | 5.4 | 31        |
| 29 | Submodule Capacitance Monitoring Strategy for Phase-Shifted Carrier Pulsewidth-Modulation-Based<br>Modular Multilevel Converters. IEEE Transactions on Industrial Electronics, 2021, 68, 8753-8767.                                                 | 5.2 | 31        |
| 30 | Efficiency-Prioritized Droop Control Strategy of AC Microgrid. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 2936-2950.                                                                                               | 3.7 | 30        |
| 31 | Zero-Voltage Switching Full-Bridge T-Type DC/DC Converter with Wide Input Voltage Range and Balanced Switch Currents. IEEE Transactions on Power Electronics, 2018, 33, 10449-10466.                                                                | 5.4 | 28        |
| 32 | Lifetime-Oriented Droop Control Strategy for AC Islanded Microgrids. IEEE Transactions on Industry<br>Applications, 2019, 55, 3252-3263.                                                                                                            | 3.3 | 28        |
| 33 | A new strategy based on hybrid battery–wind power system for wind power dispatching. IET<br>Generation, Transmission and Distribution, 2018, 12, 160-169.                                                                                           | 1.4 | 27        |
| 34 | Switch Open-Circuit Fault Localization Strategy for MMCs Using Sliding-Time Window Based Features<br>Extraction Algorithm. IEEE Transactions on Industrial Electronics, 2021, 68, 10193-10206.                                                      | 5.2 | 27        |
| 35 | Control strategy of wind turbine based on permanent magnet synchronous generator and energy storage for stand-alone systems. Chinese Journal of Electrical Engineering, 2017, 3, 51-62.                                                             | 2.3 | 26        |
| 36 | Enhanced Hierarchical Control Framework of Microgrids With Efficiency Improvement andÂThermal<br>Management. IEEE Transactions on Energy Conversion, 2021, 36, 11-22.                                                                               | 3.7 | 26        |

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A new structure based on cascaded multilevel converter for variable speed wind turbine. , 2010, , .                                                                                                       |     | 23        |
| 38 | Comparison of Levelized Cost of Energy of Superconducting Direct Drive Generators for a 10-MW Offshore Wind Turbine. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.                       | 1.1 | 23        |
| 39 | Low-voltage ride-through of variable speed wind turbines with permanent magnet synchronous generator. , 2009, , .                                                                                         |     | 22        |
| 40 | An offshore wind farm with DC grid connection and its performance under power system transients. , 2011, , .                                                                                              |     | 21        |
| 41 | A topology of DC electric springs for DC household applications. IET Power Electronics, 2019, 12, 1241-1248.                                                                                              | 1.5 | 21        |
| 42 | Enhanced Control of DFIG Wind Turbine Based on Stator Flux Decay Compensation. IEEE Transactions on Energy Conversion, 2016, 31, 1366-1376.                                                               | 3.7 | 20        |
| 43 | Zero-Voltage Switching PWM Strategy Based Capacitor Current-Balancing Control for Half-Bridge<br>Three-Level DC/DC Converter. IEEE Transactions on Power Electronics, 2018, 33, 357-369.                  | 5.4 | 20        |
| 44 | Power control of permanent magnet generator based variable speed wind turbines. , 2009, , .                                                                                                               |     | 19        |
| 45 | Impedance interactions in bidirectional cascaded converter. IET Power Electronics, 2016, 9, 2482-2491.                                                                                                    | 1.5 | 19        |
| 46 | A double input-parallel-output-series hybrid switched-capacitor boost converter. Chinese Journal of<br>Electrical Engineering, 2020, 6, 15-27.                                                            | 2.3 | 19        |
| 47 | Enhanced static ground power unit based on flying capacitor based hâ€bridge hybrid<br>activeâ€neutralâ€pointâ€clamped converter. IET Power Electronics, 2016, 9, 2337-2349.                               | 1.5 | 18        |
| 48 | DC-Link Voltage Coordinated-Proportional Control for Cascaded Converter With Zero Steady-State<br>Error and Reduced System Type. IEEE Transactions on Power Electronics, 2016, 31, 3177-3188.             | 5.4 | 18        |
| 49 | Output Impedance Modeling and High-Frequency Impedance Shaping Method for Distributed<br>Bidirectional DC–DC Converters in DC Microgrids. IEEE Transactions on Power Electronics, 2020, 35,<br>7001-7014. | 5.4 | 18        |
| 50 | Impedance Coordinative Control for Cascaded Converter in Bidirectional Application. IEEE<br>Transactions on Industry Applications, 2016, 52, 4084-4095.                                                   | 3.3 | 17        |
| 51 | Impacts of Inductor Nonlinear Characteristic in Multiconverter Microgrids: Modeling, Analysis, and<br>Mitigation. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 3333-3347.  | 3.7 | 17        |
| 52 | The Modular Current-Fed High-Frequency Isolated Matrix Converters for Wind Energy Conversion.<br>IEEE Transactions on Power Electronics, 2022, 37, 4779-4791.                                             | 5.4 | 17        |
| 53 | Design and analysis of genetic algorithm and BP neural network based PID control for boost<br>converter applied in renewable power generations. IET Renewable Power Generation, 2022, 16,<br>1336-1344.   | 1.7 | 16        |
| 54 | Periodically Swapping Modulation (PSM) Strategy for Three-Level (TL) DC/DC Converters With Balanced Switch Currents. IEEE Transactions on Industrial Electronics, 2018, 65, 412-423.                      | 5.2 | 14        |

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A Three-Phase Triple-Voltage Dual-Active-Bridge Converter for Medium Voltage DC Transformer to<br>Reduce the Number of Submodules. IEEE Transactions on Power Electronics, 2020, 35, 11574-11588.                 | 5.4 | 14        |
| 56 | DC-Link High-Frequency Current Ripple Elimination Strategy for MMCs Using Phase-Shifted<br>Double-Group Multicarrier-Based Phase-Disposition PWM. IEEE Transactions on Power Electronics,<br>2021, 36, 8872-8886. | 5.4 | 14        |
| 57 | Isolation Forest Based Submodule Open-Circuit Fault Localization Method for Modular Multilevel Converters. IEEE Transactions on Industrial Electronics, 2023, 70, 3090-3102.                                      | 5.2 | 14        |
| 58 | Detection and location of open-circuit fault for modular multilevel converter. International Journal of Electrical Power and Energy Systems, 2020, 115, 105425.                                                   | 3.3 | 13        |
| 59 | Improved Harmonic Profile for High-Power PWM Current-Source Converters With Modified<br>Space-Vector Modulation Schemes. IEEE Transactions on Power Electronics, 2021, 36, 11234-11244.                           | 5.4 | 13        |
| 60 | Capacitor monitoring for modular multilevel converters. , 2017, , .                                                                                                                                               |     | 12        |
| 61 | Thyristorâ€based modular multilevel converterâ€HVDC systems with current interruption capability. IET<br>Power Electronics, 2019, 12, 3056-3067.                                                                  | 1.5 | 12        |
| 62 | Submodule Open-Circuit Fault Detection For Modular Multilevel Converters Under Light Load<br>Condition With Rearranged Bleeding Resistor Circuit. IEEE Transactions on Power Electronics, 2022,<br>37, 4600-4613. | 5.4 | 12        |
| 63 | Temperature-Balancing Control for Modular Multilevel Converters Under Unbalanced Grid Voltages.<br>IEEE Transactions on Power Electronics, 2022, 37, 4614-4625.                                                   | 5.4 | 12        |
| 64 | A generalized discontinuous PWM based neutral point voltage balancing method for three-level NPC voltage source inverter with switching losses reduction. , 2017, , .                                             |     | 11        |
| 65 | Robust Droop Control of AC Microgrid Against Nonlinear Characteristic of Inductor. , 2019, , .                                                                                                                    |     | 11        |
| 66 | Unipolar Double-Star Submodule for Modular Multilevel Converter With DC Fault Blocking<br>Capability. IEEE Access, 2019, 7, 136094-136105.                                                                        | 2.6 | 11        |
| 67 | Balanced Power Device Currents Based Modulation Strategy for Full-Bridge Three-Level DC/DC Converter. IEEE Transactions on Power Electronics, 2020, 35, 2008-2022.                                                | 5.4 | 11        |
| 68 | A Parameter-Exempted, High-Performance Power Decoupling Control of Single-Phase Electric Springs.<br>IEEE Access, 2020, 8, 33370-33379.                                                                           | 2.6 | 11        |
| 69 | Triple-Phase-Shift Modulation Strategy for Diode-Clamped Full-Bridge Three-Level Isolated DC/DC<br>Converter. IEEE Access, 2020, 8, 2750-2759.                                                                    | 2.6 | 11        |
| 70 | Double Half-Bridge Submodule-Based Modular Multilevel Converters With Reduced Voltage Sensors.<br>IEEE Transactions on Power Electronics, 2021, 36, 3643-3648.                                                    | 5.4 | 11        |
| 71 | Hybrid Modular Multilevel Converter With Self-Balancing Structure. IEEE Transactions on Industry<br>Applications, 2021, 57, 5039-5051.                                                                            | 3.3 | 11        |
| 72 | Improved Reference Generation of Active and Reactive Power for Matrix Converter With Model<br>Predictive Control Under Input Disturbances. IEEE Access, 2019, 7, 97001-97012.                                     | 2.6 | 10        |

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Decoupled Power Control With Indepth Analysis of Single-Phase Electric Springs. IEEE Access, 2020, 8, 21866-21874.                                                                                                                                  | 2.6 | 10        |
| 74 | Improved Control Strategy of Triple-Voltage Three-Phase DAB (T <sup>2</sup> -DAB) Converter for<br>Current Stress and Zero-Voltage-Switching Optimization. IEEE Journal of Emerging and Selected<br>Topics in Power Electronics, 2022, 10, 773-784. | 3.7 | 9         |
| 75 | A New Interleaved Double-Input Three-Level Boost Converter. Journal of Power Electronics, 2016, 16, 925-935.                                                                                                                                        | 0.9 | 9         |
| 76 | Impedance interaction modeling and analysis for bidirectional cascaded converters. , 2015, , .                                                                                                                                                      |     | 8         |
| 77 | The State of the Art of Topologies for Electric Springs. Energies, 2018, 11, 1724.                                                                                                                                                                  | 1.6 | 8         |
| 78 | Energy Management System for DC Electric Spring With Parallel Topology. IEEE Transactions on<br>Industry Applications, 2020, 56, 5385-5395.                                                                                                         | 3.3 | 8         |
| 79 | Harmonic Optimization Strategy for CPS-PWM Based MMCs Under Submodule Capacitor Voltage<br>Reduction Control. IEEE Transactions on Power Electronics, 2022, 37, 4288-4300.                                                                          | 5.4 | 8         |
| 80 | Modular multilevel converters based variable speed wind turbines for grid faults. , 2016, , .                                                                                                                                                       |     | 7         |
| 81 | Control of three-phase electric springs used in microgrids under ideal and non-ideal conditions. , 2016, , .                                                                                                                                        |     | 7         |
| 82 | Distributed Cooperative Control for Multiple DC Electric Springs with Novel Topologies Applied in DC Microgrid. , 2019, , .                                                                                                                         |     | 7         |
| 83 | Adaptive Droop Control Strategy of Autonomous Microgrid for Efficiency Improvement. , 2019, , .                                                                                                                                                     |     | 7         |
| 84 | Thermal Optimization Strategy Based on Second-Order Harmonic Circulating Current Injection for MMCs. IEEE Access, 2021, 9, 80183-80196.                                                                                                             | 2.6 | 7         |
| 85 | An Interleaved Five-level Boost Converter with Voltage-Balance Control. Journal of Power<br>Electronics, 2016, 16, 1735-1742.                                                                                                                       | 0.9 | 7         |
| 86 | DC electric springs with DC/DC converters. , 2016, , .                                                                                                                                                                                              |     | 6         |
| 87 | Faultâ€ŧolerant compensation control for Tâ€ŧype threeâ€level inverter with zeroâ€sequence voltage<br>injection. IET Power Electronics, 2019, 12, 3774-3781.                                                                                        | 1.5 | 6         |
| 88 | Modular Multilevel Converter and Cycloconverter Based Machine Drive Systems. , 2020, , .                                                                                                                                                            |     | 6         |
| 89 | Improved CPS-PWM Approach for Over-Modulation Operations of Hybrid Modular Multilevel<br>Converter. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 5933-5943.                                                         | 3.7 | 6         |
| 90 | A Three-Phase Multiplexing Arm Modular Multilevel Converter With High Power Density and Small<br>Volume. IEEE Transactions on Power Electronics, 2022, 37, 14587-14600.                                                                             | 5.4 | 6         |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The State of the Art of the Control Strategies for Single-Phase Electric Springs. Applied Sciences<br>(Switzerland), 2018, 8, 2019.                                                                   | 1.3 | 5         |
| 92  | Regulation Performance of Multiple DC Electric Springs Controlled by Distributed Cooperative System. Energies, 2019, 12, 3422.                                                                        | 1.6 | 5         |
| 93  | Capacitor Monitoring for Full-Bridge Submodule Based Modular Multilevel Converters. , 2019, , .                                                                                                       |     | 5         |
| 94  | Advanced 2 <i>N</i> +1 Submodule Unified PWM With Reduced DC-Link Current Ripple for Modular<br>Multilevel Converters. IEEE Transactions on Power Electronics, 2022, 37, 4261-4274.                   | 5.4 | 5         |
| 95  | Voltage balancing control of hybrid MMC under over-modulation situations with optimal circulating current injection. International Journal of Electrical Power and Energy Systems, 2022, 140, 108053. | 3.3 | 5         |
| 96  | Cascaded Modular Multilevel Converter and Cycloconverter Based Machine Drive System. IEEE<br>Transactions on Industrial Electronics, 2023, 70, 2373-2384.                                             | 5.2 | 5         |
| 97  | Input-parallel output-parallel (IPOP) three-level (TL) DC/DC converters with minimized capacitor ripple currents. , 2016, , .                                                                         |     | 4         |
| 98  | Dynamic droop scheme considering effect of intermittent renewable energy source. , 2016, , .                                                                                                          |     | 4         |
| 99  | The topologies research of a soft switching bidirectional DC/DC converter. , 2017, , .                                                                                                                |     | 4         |
| 100 | An Active High Frequency Damping Scheme for the Current Control of L Filter-Based Grid-Connected<br>Inverter. IEEE Access, 2019, 7, 171738-171751.                                                    | 2.6 | 4         |
| 101 | Modified Feedforward Control to Suppress DC Voltage Disturbances for Three-Stage MMC-PET. , 2019, ,                                                                                                   |     | 4         |
| 102 | Overmodulation Operation of Hybrid Modular Multilevel Converter With Reduced Energy Storage<br>Requirement. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 2946-2958.   | 3.7 | 4         |
| 103 | Hybrid Modular Multilevel Converter with Self-Balancing Structure. , 2020, , .                                                                                                                        |     | 4         |
| 104 | A Hierarchical Model Predictive Voltage Control for NPC/H-Bridge Converters with a Reduced Computational Burden. Journal of Power Electronics, 2017, 17, 136-148.                                     | 0.9 | 4         |
| 105 | Impedance coordinative control for cascaded converter in bidirectional application. , 2015, , .                                                                                                       |     | 3         |
| 106 | One-Step-Prediction Discrete Observer Based Frequency-Locked-Loop Technique for Three-Phase<br>System. IEEE Access, 2021, 9, 95401-95411.                                                             | 2.6 | 3         |
| 107 | Direct Power Control of Three-Phase Electric Springs. IEEE Transactions on Industrial Electronics, 2022, 69, 13033-13044.                                                                             | 5.2 | 3         |
| 108 | Power Loss Reduction Control for Modular Multilevel Converters Based on Resistor Controllable<br>Submodule. IEEE Transactions on Power Electronics, 2022, 37, 9767-9776.                              | 5.4 | 3         |

| #   | Article                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Coodinative control of active power and DC-link voltage for cascaded dual-active-bridge and inverter in bidirectional applications. , 2014, , .                                    |     | 2         |
| 110 | Novel topology of three-phase electric spring and its control. , 2017, , .                                                                                                         |     | 2         |
| 111 | A zero-voltage switching control strategy for dual half-bridge cascaded three-level DC/DC converter with balanced capacitor voltages. , 2017, , .                                  |     | 2         |
| 112 | Triple-Phase-Shift Control Strategy for Full-Bridge Three-Level (FBTL) DC/DC Converter. , 2018, , .                                                                                |     | 2         |
| 113 | Lifetime-Oriented Droop Control Strategy for AC Islanded Microgrids. , 2018, , .                                                                                                   |     | 2         |
| 114 | A Three-Phase Hybrid Four-Level Rectifier. , 2019, , .                                                                                                                             |     | 2         |
| 115 | A Novel Method Simulating Human Eye Recognition for Sector Judgement of SVPWM Algorithm. IEEE Access, 2020, 8, 90216-90224.                                                        | 2.6 | 2         |
| 116 | Investigation Into Multi-Phase Armature Windings for High-Temperature Superconducting Wind Turbine Generators. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.      | 1.1 | 2         |
| 117 | A type of piecewise and modular energy storage topology achieved by dual carrier cross phase shift<br>SPWM control. IET Power Electronics, 2022, 15, 463-475.                      | 1.5 | 2         |
| 118 | Analysis and stabilization control of a voltage source controlled wind farm under weak grid conditions. Frontiers in Energy, 0, , 1.                                               | 1.2 | 2         |
| 119 | Characteristics of the Superconducting Field Winding of an HTS Wind Turbine Generator During a Short Circuit Fault. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-6. | 1.1 | 2         |
| 120 | Capacitor Monitoring for Modular Multilevel Converters Based on Intelligent Algorithm. , 2022, , .                                                                                 |     | 2         |
| 121 | Variable speed wind turbine based on multiple generators drive-train configuration. , 2010, , .                                                                                    |     | 1         |
| 122 | A double phase-shift control strategy for a full-bridge three-level DC/DC converter. , 2016, , .                                                                                   |     | 1         |
| 123 | A ZVS PWM control strategy with balanced capacitor current for half-bridge three-level DC/DC converter. , 2017, , .                                                                |     | 1         |
| 124 | Enhanced Control of DFIG Wind Turbine Based on Stator Flux Decay Compensation. , 2018, , .                                                                                         |     | 1         |
| 125 | Hierarchical Control with Fast Primary Control for Multiple Single-Phase Electric Springs. Energies, 2019, 12, 3511.                                                               | 1.6 | 1         |
| 126 | A Three-Phase Four-Level Rectifier with Reduced Component Count. , 2019, , .                                                                                                       |     | 1         |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Circulating current suppression control for modular multilevel converters based on restricted self-redundant states prediction. Journal of Power Electronics, 2020, 20, 1149-1161.                                   | 0.9 | 1         |
| 128 | Analysis on boundary conditions of soft switching for DC electric spring with parallel topology. IET<br>Power Electronics, 2021, 14, 2167-2177.                                                                      | 1.5 | 1         |
| 129 | Power losses minimization for modular multilevel converter s with secondâ€order and fourthâ€order harmonic circulating current injection. International Transactions on Electrical Energy Systems, 2021, 31, e12962. | 1.2 | 1         |
| 130 | Parameter Estimator-based Power Control Strategy of Microgrid Considering Nonlinear Inductor. , 2021, , .                                                                                                            |     | 1         |
| 131 | Two Control Strategies for Aggregated Wind Turbine Model with Permanent Magnet Synchronous<br>Generator. Renewable Energy and Power Quality Journal, 0, , 1338-1343.                                                 | 0.2 | 1         |
| 132 | Circulating Current Control Scheme Under Capacitor Aging In Modular Multilevel Converter. , 2019, ,                                                                                                                  |     | 1         |
| 133 | Statistical Multi-Faults Localization Strategy of Switch Open-Circuit Fault for Modular Multilevel Converters Using Grubbs Criterion. , 2020, , .                                                                    |     | 1         |
| 134 | A Robust Voltage Sensorless Droop Control Strategy of Microgrid Against Parameters Perturbation. ,<br>2020, , .                                                                                                      |     | 1         |
| 135 | Capacitor Voltage Ripple Suppression of Modular Multilevel Converters Based on Improved High-Frequency Injection Method. , 2021, , .                                                                                 |     | 1         |
| 136 | Sensorless Robust Flatness-Based Control With Nonlinear Observer for Non-Ideal Parallel DC–AC<br>Inverters. IEEE Access, 2022, 10, 53940-53953.                                                                      | 2.6 | 1         |
| 137 | Impedance analysis of control modes in cascaded converter. , 2015, , .                                                                                                                                               |     | 0         |
| 138 | DC-link voltage coordinative-proportional control in cascaded converter systems. , 2015, , .                                                                                                                         |     | 0         |
| 139 | A bidirectional multi-port DC-DC converter integrating voltage equalizer. , 2015, , .                                                                                                                                |     | 0         |
| 140 | Five-level active-neutral-point-clamped DC/DC converter. , 2016, , .                                                                                                                                                 |     | 0         |
| 141 | Full-Bridge T-type Isolated DC/DC Converter with Wide Input Voltage Range. , 2018, , .                                                                                                                               |     | Ο         |
| 142 | Dead-Beat Control Cooperating with State Observer for Single-Phase Electric Springs. Applied Sciences (Switzerland), 2018, 8, 2335.                                                                                  | 1.3 | 0         |
| 143 | Space Vector Modulation Strategy of Three Phase Multilevel Current Source Rectifer. , 2020, , .                                                                                                                      |     | 0         |
| 144 | Influence of Electromagnetic Fluctuation on the Behaviors of NI REBCO Racetrack Coils Applied in<br>MW-Class Wind Turbine Generator. , 2020, , .                                                                     |     | 0         |

| #   | Article                                                                                                                      | IF | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------|----|-----------|
| 145 | Efficiency Modelling and Analysis of Multi-bus Microgrid with Transmission Network. , 2020, , .                              |    | Ο         |
| 146 | A Comparative Study of Modulation Strategies for Diode-Clamped Full-Bridge Three-Level Isolated DC/DC Converter. , 2020, , . |    | 0         |
| 147 | Design of Inverter Side Inductance for LCL Filter in Modular Multilevel Converters. , 2020, , .                              |    | Ο         |
| 148 | Optimal DC Electric Spring Planning Based on Intelligent Algorithm. , 2022, , .                                              |    | 0         |
| 149 | SM Insertion Time Based Capacitance Monitoring in Modular Multilevel Converters. , 2021, , .                                 |    | 0         |