Sona Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7100289/publications.pdf

Version: 2024-02-01

		759055	8	339398
18	1,018	12		18
papers	citations	h-index		g-index
20	20	20		2576
20	20	20		2370
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	IRF4 Is a Key Thermogenic Transcriptional Partner of PGC-1α. Cell, 2014, 158, 69-83.	13.5	239
2	IRF3 promotes adipose inflammation and insulin resistance and represses browning. Journal of Clinical Investigation, 2016, 126, 2839-2854.	3.9	134
3	Regulation of Early Adipose Commitment by Zfp521. PLoS Biology, 2012, 10, e1001433.	2.6	114
4	MicroRNA-181b Improves Glucose Homeostasis and Insulin Sensitivity by Regulating Endothelial Function in White Adipose Tissue. Circulation Research, 2016, 118, 810-821.	2.0	108
5	Dnmt3a is an epigenetic mediator of adipose insulin resistance. ELife, 2017, 6, .	2.8	97
6	Identification of nuclear hormone receptor pathways causing insulin resistance by transcriptional and epigenomic analysis. Nature Cell Biology, 2015, 17, 44-56.	4.6	61
7	Nuclear Mechanisms of Insulin Resistance. Trends in Cell Biology, 2016, 26, 341-351.	3.6	60
8	Functional Implications of DNA Methylation in Adipose Biology. Diabetes, 2019, 68, 871-878.	0.3	40
9	TET1 is a beige adipocyte-selective epigenetic suppressor of thermogenesis. Nature Communications, 2020, 11, 4313.	5.8	34
10	Adipocyte-Specific Transgenic and Knockout Models. Methods in Enzymology, 2014, 537, 1-16.	0.4	33
11	TET2 facilitates PPARγ agonist–mediated gene regulation and insulin sensitization in adipocytes. Metabolism: Clinical and Experimental, 2018, 89, 39-47.	1.5	29
12	A necessary role of DNMT3A in endurance exercise by suppressing ALDH1L1â€mediated oxidative stress. EMBO Journal, 2021, 40, e106491.	3.5	21
13	Arterial territory-specific phosphorylated retinoblastoma protein species and CDK2 promote differences in the vascular smooth muscle cell response to mitogens. Cell Cycle, 2014, 13, 315-323.	1.3	12
14	JMJD8 Is a Novel Molecular Nexus Between Adipocyte-Intrinsic Inflammation and Insulin Resistance. Diabetes, 2022, 71, 43-59.	0.3	9
15	Adipose Tissue Malfunction Drives Metabolic Dysfunction in Alström Syndrome. Diabetes, 2021, 70, 323-325.	0.3	8
16	Epigenetic regulation of inflammatory factors in adipose tissue. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 159019.	1.2	8
17	The role of DNA methylation in thermogenic adipose biology. Epigenetics, 2019, 14, 837-843.	1.3	6
18	DNMT3a and TET2 in adipocyte insulin sensitivity. Oncotarget, 2018, 9, 35289-35290.	0.8	4