Kyung-Cheol Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/710015/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chitin Nanofiber Transparent Paper for Flexible Green Electronics. Advanced Materials, 2016, 28, 5169-5175.	11.1	213
2	Organic Lightâ€Emitting Diodes: Pushing Toward the Limits and Beyond. Advanced Materials, 2020, 32, e1907539.	11.1	195
3	A Review of Flexible OLEDs Toward Highly Durable Unusual Displays. IEEE Transactions on Electron Devices, 2017, 64, 1922-1931.	1.6	185
4	Textile-based washable polymer solar cells for optoelectronic modules: toward self-powered smart clothing. Energy and Environmental Science, 2019, 12, 1878-1889.	15.6	136
5	Highly Flexible and Efficient Fabric-Based Organic Light-Emitting Devices for Clothing-Shaped Wearable Displays. Scientific Reports, 2017, 7, 6424.	1.6	113
6	Weavable and Highly Efficient Organic Light-Emitting Fibers for Wearable Electronics: A Scalable, Low-Temperature Process. Nano Letters, 2018, 18, 347-356.	4.5	113
7	Plasmonic Color Filter and its Fabrication for Largeâ€Area Applications. Advanced Optical Materials, 2013, 1, 133-138.	3.6	110
8	Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application. Applied Physics Letters, 2009, 94, .	1.5	105
9	High Luminance Fiberâ€Based Polymer Lightâ€Emitting Devices by a Dipâ€Coating Method. Advanced Electronic Materials, 2015, 1, 1500103.	2.6	94
10	A flexible moisture barrier comprised of a SiO2-embedded organic–inorganic hybrid nanocomposite and Al2O3 for thin-film encapsulation of OLEDs. Organic Electronics, 2013, 14, 1435-1440.	1.4	91
11	Highly Transparent and Flexible Organic Lightâ€Emitting Diodes with Structure Optimized for Anode/Cathode Multilayer Electrodes. Advanced Functional Materials, 2015, 25, 7145-7153.	7.8	90
12	Reliable Actual Fabricâ€Based Organic Lightâ€Emitting Diodes: Toward a Wearable Display. Advanced Electronic Materials, 2016, 2, 1600220.	2.6	90
13	Sandwich-structure transferable free-form OLEDs for wearable and disposable skin wound photomedicine. Light: Science and Applications, 2019, 8, 114.	7.7	86
14	A review of highly reliable flexible encapsulation technologies towards rollable and foldable OLEDs. Journal of Information Display, 2020, 21, 19-32.	2.1	86
15	Thin film encapsulation for organic light emitting diodes using a multi-barrier composed of MgO prepared by atomic layer deposition and hybrid materials. Organic Electronics, 2013, 14, 1737-1743.	1.4	85
16	Soft fabric-based flexible organic light-emitting diodes. Organic Electronics, 2013, 14, 3007-3013.	1.4	83
17	Recent Progress of Fiber Shaped Lighting Devices for Smart Display Applications—A Fibertronic Perspective. Advanced Materials, 2020, 32, e1903488.	11.1	81
18	A Wearable Photobiomodulation Patch Using a Flexible Redâ€Wavelength OLED and Its In Vitro Differential Cell Proliferation Effects. Advanced Materials Technologies, 2018, 3, 1700391.	3.0	68

#	Article	IF	CITATIONS
19	Design of Highly Water Resistant, Impermeable, and Flexible Thin-Film Encapsulation Based on Inorganic/Organic Hybrid Layers. ACS Applied Materials & Interfaces, 2019, 11, 3251-3261.	4.0	68
20	ITO-free flexible organic light-emitting diode using ZnS/Ag/MoO3 anode incorporating a quasi-perfect Ag thin film. Organic Electronics, 2013, 14, 3437-3443.	1.4	66
21	Reliable thin-film encapsulation of flexible OLEDs and enhancing their bending characteristics through mechanical analysis. RSC Advances, 2016, 6, 40835-40843.	1.7	64
22	Low resistive transparent and flexible ZnO/Ag/ZnO/Ag/WO3 electrode for organic light-emitting diodes. Organic Electronics, 2012, 13, 1654-1659.	1.4	62
23	Parallel-Stacked Flexible Organic Light-Emitting Diodes for Wearable Photodynamic Therapeutics and Color-Tunable Optoelectronics. ACS Nano, 2020, 14, 15688-15699.	7.3	62
24	Fibertronic Organic Light-Emitting Diodes toward Fully Addressable, Environmentally Robust, Wearable Displays. ACS Nano, 2020, 14, 1133-1140.	7.3	60
25	Surface plasmon-enhanced energy transfer in an organic light-emitting device structure. Optics Express, 2009, 17, 11495.	1.7	58
26	Functional Design of Highly Robust and Flexible Thin-Film Encapsulation Composed of Quasi-Perfect Sublayers for Transparent, Flexible Displays. ACS Applied Materials & Interfaces, 2017, 9, 43983-43992.	4.0	58
27	The encapsulation of an organic light-emitting diode using organic–inorganic hybrid materials and MgO. Organic Electronics, 2011, 12, 609-613.	1.4	56
28	Thin-Film Thermoelectric Module for Power Generator Applications Using a Screen-Printing Method. Journal of Electronic Materials, 2011, 40, 615-619.	1.0	55
29	Functional Design of Dielectric–Metal–Dielectric-Based Thin-Film Encapsulation with Heat Transfer and Flexibility for Flexible Displays. ACS Applied Materials & Interfaces, 2017, 9, 27062-27072.	4.0	52
30	Highly reliable hybrid nano-stratified moisture barrier for encapsulating flexible OLEDs. Organic Electronics, 2016, 33, 150-155.	1.4	51
31	Two-Dimensionally Stretchable Organic Light-Emitting Diode with Elastic Pillar Arrays for Stress Relief. Nano Letters, 2020, 20, 1526-1535.	4.5	48
32	Thermoelectric properties of screen-printed ZnSb film. Thin Solid Films, 2011, 519, 5441-5443.	0.8	47
33	Improvement of luminance and luminous efficiency using address voltage pulse during sustain-period of AC-PDP. IEEE Transactions on Electron Devices, 2001, 48, 1903-1910.	1.6	46
34	A New AC Plasma Display Panel With Auxiliary Electrode for High Luminous Efficacy. IEEE Transactions on Electron Devices, 2007, 54, 210-218.	1.6	46
35	A mechanically enhanced hybrid nano-stratified barrier with a defect suppression mechanism for highly reliable flexible OLEDs. Nanoscale, 2017, 9, 6370-6379.	2.8	46
36	Improved light extraction efficiency in organic light emitting diodes with a perforated WO_3 hole injection layer fabricated by use of colloidal lithography. Optics Express, 2012, 20, A309.	1.7	45

#	Article	IF	CITATIONS
37	Extracting optical modes of organic light-emitting diodes using quasi-periodic WO_3 nanoislands. Optics Express, 2013, 21, 5424.	1.7	45
38	Surface plasmonic controllable enhanced emission from the intrachain and interchain excitons of a conjugated polymer. Applied Physics Letters, 2010, 97, 193306.	1.5	44
39	Study of various coplanar gaps discharges in ac plasma display panel. IEEE Transactions on Plasma Science, 2006, 34, 385-389.	0.6	43
40	Flexible organic light-emitting diodes with ZnS/Ag/ZnO/Ag/WO3 multilayer electrode as a transparent anode. Organic Electronics, 2014, 15, 2468-2475.	1.4	41
41	Multi-directionally wrinkle-able textile OLEDs for clothing-type displays. Npj Flexible Electronics, 2020, 4, .	5.1	41
42	Enhanced emission from BaMgAl_10O_17:Eu^2+ by localized surface plasmon resonance of silver particles. Optics Express, 2010, 18, 12144.	1.7	40
43	Enhanced Light Extraction from Mechanically Flexible, Nanostructured Organic Lightâ€Emitting Diodes with Plasmonic Nanomesh Electrodes. Advanced Optical Materials, 2015, 3, 1240-1247.	3.6	40
44	Highly conductive and flexible color filter electrode using multilayer film structure. Scientific Reports, 2016, 6, 29341.	1.6	40
45	OLED with a controlled molecular weight of the PVK (poly(9-vinylcarbazole)) formed by a reactive ink-jet process. Organic Electronics, 2012, 13, 980-984.	1.4	39
46	Simultaneous synthesis and patterning of graphene electrodes by reactive inkjet printing. Carbon, 2014, 66, 172-177.	5.4	39
47	Highly Conductive Transparent and Flexible Electrodes Including Double-Stacked Thin Metal Films for Transparent Flexible Electronics. ACS Applied Materials & Interfaces, 2017, 9, 16343-16350.	4.0	39
48	Flexible organic lightâ€emittingâ€diodeâ€based photonic skin for attachable phototherapeutics. Journal of the Society for Information Display, 2020, 28, 324-332.	0.8	38
49	Brightâ€Multicolor, Highly Efficient, and Addressable Phosphorescent Organic Lightâ€Emitting Fibers: Toward Wearable Textile Information Displays. Advanced Functional Materials, 2021, 31, 2009336.	7.8	38
50	Plasmonically Engineered Textile Polymer Solar Cells for High-Performance, Wearable Photovoltaics. ACS Applied Materials & Interfaces, 2019, 11, 20864-20872.	4.0	37
51	Solution-processed bottom-emitting polymer light-emitting diodes on a textile substrate towards a wearable display. Journal of Information Display, 2015, 16, 179-184.	2.1	33
52	Numerical analysis of the microdischarge in a DC plasma display panel by 2-dimensional multifluid equations. IEEE Transactions on Plasma Science, 1995, 23, 399-404.	0.6	31
53	Blurâ€Free Outcoupling Enhancement in Transparent Organic Light Emitting Diodes:ÂA Nanostructure Extracting Surface Plasmon Modes. Advanced Optical Materials, 2013, 1, 687-691.	3.6	31
54	Reliable high temperature, high humidity flexible thin film encapsulation using Al2O3/MgO nanolaminates for flexible OLEDs. Nano Research, 2020, 13, 2716-2725.	5.8	31

#	Article	IF	CITATIONS
55	Transparent and Flexible Resistive Random Access Memory Based on Al ₂ O ₃ Film With Multilayer Electrodes. IEEE Transactions on Electron Devices, 2017, 64, 3508-3510.	1.6	29
56	Design of ultrathin OLEDs having oxide-based transparent electrodes and encapsulation with sub-mm bending radius. Organic Electronics, 2020, 82, 105704.	1.4	29
57	Localized surface plasmon enhanced cathodoluminescence from Eu^3+-doped phosphor near the nanoscaled silver particles. Optics Express, 2011, 19, 13209.	1.7	27
58	Low-Temperature Fabrication of Robust, Transparent, and Flexible Thin-Film Transistors with a Nanolaminated Insulator. ACS Applied Materials & Interfaces, 2018, 10, 15829-15840.	4.0	27
59	Foldable and washable textile-based OLEDs with a multi-functional near-room-temperature encapsulation layer for smart e-textiles. Npj Flexible Electronics, 2021, 5, .	5.1	27
60	Optical Effect of Surface Morphology of Ag on Multilayer Electrode Applications for OLEDs. IEEE Electron Device Letters, 2014, 35, 238-240.	2.2	26
61	Negative mold transfer patterned conductive polymer electrode for flexible organic light-emitting diodes. Organic Electronics, 2013, 14, 416-422.	1.4	25
62	Highâ€Performance and Reliable White Organic Lightâ€Emitting Fibers for Truly Wearable Textile Displays. Advanced Science, 2022, 9, e2104855.	5.6	24
63	Influence of the charge trap density distribution in a gate insulator on the positive-bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors. Applied Physics Letters, 2016, 108, .	1.5	23
64	Nanoplasmonâ€Enhanced Transparent Plasma Display Devices. Small, 2012, 8, 1350-1354.	5.2	22
65	Solution-based nanostructure to reduce waveguide and surface plasmon losses in organic light-emitting diodes. Organic Electronics, 2014, 15, 3183-3190.	1.4	22
66	Electro-Thermal Annealing Method for Recovery of Cyclic Bending Stress in Flexible a-IGZO TFTs. IEEE Transactions on Electron Devices, 2017, 64, 3189-3192.	1.6	22
67	Relationship between surface plasmon and transmittance enhancement in indium–tin-oxide/Ag/indium–tin-oxide multilayer electrodes. Thin Solid Films, 2012, 520, 3605-3608.	0.8	21
68	Color Purifying Optical Nanothin Film for Three Primary Colors in Optoelectronics. ACS Photonics, 2018, 5, 3322-3330.	3.2	21
69	Robust Transparent and Conductive Gas Diffusion Multibarrier Based on Mg- and Al-Doped ZnO as Indium Tin Oxide-Free Electrodes for Organic Electronics. ACS Applied Materials & Interfaces, 2018, 10, 32387-32396.	4.0	21
70	Low-Leakage Fiber-Based Field-Effect Transistors with an Al ₂ O ₃ –MgO Nanolaminate as Gate Insulator. ACS Applied Electronic Materials, 2019, 1, 1400-1407.	2.0	21
71	Effect of Dual Coplanar Electrodes on Mercury-Free Flat Fluorescent Lamps for Liquid Crystal Display. Journal of Display Technology, 2006, 2, 60-67.	1.3	20
72	Improvement in Outcoupling Efficiency and Image Blur of Organic Light-Emitting Diodes by Using Imprinted Microlens Arrays. Journal of Display Technology, 2011, 7, 377-381.	1.3	20

#	Article	IF	CITATIONS
73	Suppressed Instability of a-IGZO Thin-Film Transistors Under Negative Bias Illumination Stress Using the Distributed Bragg Reflectors. IEEE Transactions on Electron Devices, 2016, 63, 1066-1071.	1.6	20
74	Wall Voltage and Priming Effect Due to Auxiliary Electrode in AC PDP With Auxiliary Electrode. IEEE Transactions on Plasma Science, 2007, 35, 1567-1573.	0.6	19
75	Plasmonic nanomeshes as large-area, low-resistive transparent electrodes and their application to ITO-free organic light-emitting diodes. Organic Electronics, 2014, 15, 3354-3361.	1.4	19
76	Microcavity effect using nanoparticles to enhance the efficiency of organic light-emitting diodes. Optics Express, 2015, 23, 19863.	1.7	19
77	Improvement in the luminous efficiency using ramped-square sustain waveform in an AC surface-discharge plasma display panel. IEEE Transactions on Electron Devices, 2001, 48, 1469-1472.	1.6	18
78	Enhanced photoluminescence from zinc oxide by plasmonic resonance of reduced graphene oxide. Journal of Applied Physics, 2013, 114, 074903.	1.1	18
79	Metal-containing thin-film encapsulation with flexibility and heat transfer. Journal of Information Display, 2015, 16, 123-128.	2.1	18
80	Unveiling the Annealing-Dependent Mechanical Properties of Freestanding Indium Tin Oxide Thin Films. ACS Applied Materials & Interfaces, 2021, 13, 16650-16659.	4.0	18
81	Effects of pre-reset conditions on reset discharge from ramp reset waveforms in AC plasma display panel. IEEE Transactions on Electron Devices, 2005, 52, 17-22.	1.6	17
82	A study on the secondary electron emission from Na-ion-doped MgO films in relation to the discharge characteristics of plasma display panels. Thin Solid Films, 2009, 517, 1706-1709.	0.8	16
83	Optical tuning of phosphors by plasmonic gold nanoparticles for phosphor-converted white light emitting diodes. Applied Physics Letters, 2014, 105, .	1.5	16
84	Effect of Gold Nanorods in an MgO Protective Layer of AC Plasma Display Panels. ACS Applied Materials & Interfaces, 2015, 7, 7559-7565.	4.0	16
85	Abnormal electrical characteristics of multi-layered MoS ₂ FETs attributed to bulk traps. 2D Materials, 2016, 3, 015007.	2.0	16
86	Direct fabrication of copper patterns by reactive inkjet printing. Current Applied Physics, 2013, 13, 1870-1873.	1.1	15
87	Photoâ€Insensitive Amorphous Oxide Thinâ€Film Transistor Integrated with a Plasmonic Filter for Transparent Electronics. Advanced Functional Materials, 2014, 24, 3482-3487.	7.8	15
88	Nanosinusoidal Surface Zinc Oxide for Optical Out-coupling of Inverted Organic Light-Emitting Diodes. ACS Photonics, 2018, 5, 4061-4067.	3.2	15
89	Low-Temperature and Corrosion-Resistant Gas Diffusion Multibarrier with UV and Heat Rejection Capability—A Strategy to Ensure Reliability of Organic Electronics. ACS Applied Materials & Interfaces, 2019, 11, 16776-16784.	4.0	15
90	Electrothermal Annealing (ETA) Method to Enhance the Electrical Performance of Amorphous-Oxide-Semiconductor (AOS) Thin-Film Transistors (TFTs). ACS Applied Materials & Interfaces, 2016, 8, 23820-23826.	4.0	14

#	Article	IF	CITATIONS
91	Efficient Green Organic Light-Emitting Diodes by Plasmonic Silver Nanoparticles. IEEE Photonics Technology Letters, 2016, 28, 371-374.	1.3	14
92	Influence of Gold Nanoparticles on the Characteristics of Plasma Display Panels. IEEE Transactions on Electron Devices, 2010, 57, 2644-2650.	1.6	13
93	Highly luminescent blue-emitting CdZnS/ZnS nanorods having electric-field-induced fluorescence switching properties. Journal of Materials Chemistry C, 2017, 5, 2098-2106.	2.7	13
94	Synergistic gas diffusion multilayer architecture based on the nanolaminate and inorganic-organic hybrid organic layer. Journal of Information Display, 2018, 19, 135-142.	2.1	13
95	Thienothiophenylâ€Isoquinoline Iridium Complexâ€Based Deep Red to Nearâ€Infrared Organic Lightâ€Emitting Diodes with Low Driving Voltage and High Radiant Emittance for Practical Biomedical Applications. Advanced Photonics Research, 2021, 2, 2100121.	1.7	13
96	Characteristics of charged and metastable species in micro-discharges of AC- plasma display panel. IEEE Transactions on Plasma Science, 2003, 31, 329-332.	0.6	12
97	The Effect of the Discharge Aging Process on the Surface State of MgO Film in AC PDPs. IEEE Transactions on Electron Devices, 2004, 51, 1241-1244.	1.6	12
98	Case studies on temperature-dependent Characteristics in AC PDPs. IEEE Transactions on Plasma Science, 2005, 33, 162-169.	0.6	12
99	The Effect of the Auxiliary Electrode on the Microplasma Generated in a Plasma Display With a Coplanar Gap. IEEE Transactions on Plasma Science, 2007, 35, 650-655.	0.6	12
100	Improvement of Reliability of a Flexible Photoluminescent Display Using Organic-Based Materials. IEEE Transactions on Electron Devices, 2010, 57, 3370-3376.	1.6	12
101	Optical characteristics of YVO_4:Eu^3+ phosphor in close proximity to Ag nanofilm: emitting layer for mirror-type displays. Optics Express, 2012, 20, 2143.	1.7	12
102	Surface plasmon-assisted nano-lithography with a perfect contact aluminum mask of a hexagonal dot array. Plasmonics, 2016, 11, 1337-1342.	1.8	12
103	A new DC plasma display panel using microbridge structure and hollow cathode discharge. IEEE Transactions on Electron Devices, 1999, 46, 2256-2260.	1.6	11
104	Characteristics of a wall voltage during sustain period in AC plasma display panels. IEEE Transactions on Plasma Science, 2005, 33, 964-968.	0.6	11
105	Highly Transparent SU-8 Photoresist Barrier Rib for a Transparent AC Plasma Display Panel. Journal of Display Technology, 2011, 7, 40-43.	1.3	11
106	Phosphorescent transparent organic light-emitting diodes with enhanced outcoupling efficiency: Reduction of surface plasmon losses. Organic Electronics, 2014, 15, 1222-1228.	1.4	11
107	Poly-periodic hole arrays for angle-invariant plasmonic filters. Optics Letters, 2015, 40, 3873.	1.7	11
108	Ultra-High-Resolution Organic Light-Emitting Diodes with Color Conversion Electrode. ACS Photonics, 2018, 5, 1891-1897.	3.2	11

#	Article	IF	CITATIONS
109	Microbridge plasma display panel with high gas pressure. IEEE Transactions on Electron Devices, 1998, 45, 1356-1360.	1.6	10
110	Surface plasmon-waveguide hybrid polymer light-emitting devices using hexagonal Ag dots. Optics Letters, 2012, 37, 761.	1.7	10
111	Large and pristine films of reduced graphene oxide. Scientific Reports, 2015, 5, 18799.	1.6	10
112	Reduction of graphene oxide film with poly (vinyl alcohol). Chemical Physics Letters, 2015, 625, 36-40.	1.2	10
113	Plasmonic Chromatic Electrode with Low Resistivity. Scientific Reports, 2017, 7, 15206.	1.6	10
114	22â€4: Wearable Photobiomodulation Patch using Attachable Flexible Organic Lightâ€Emitting Diodes for Human Keratinocyte Cells. Digest of Technical Papers SID International Symposium, 2018, 49, 279-282.	0.1	10
115	Characteristics of an address discharge in ac plasma display panels. IEEE Transactions on Plasma Science, 2005, 33, 1426-1430.	0.6	9
116	Localized Surface Plasmon Coupled Photoluminescence of Divalent Europium Complex With Silver Nanoparticles. IEEE Photonics Technology Letters, 2011, 23, 1415-1417.	1.3	9
117	Toward Flexible Transparent Plasma Display: Optical Characteristics of Low-Temperature Fabricated Organic-Based Display Structure. IEEE Electron Device Letters, 2012, 33, 74-76.	2.2	9
118	Matching Surface Plasmon Modes in Symmetry-Broken Structures for Nanohole-Based Color Filter. IEEE Photonics Technology Letters, 2013, 25, 2454-2457.	1.3	9
119	Plasmonically Enhanced Optical Characteristics From Europium Organometallic Complex. IEEE Photonics Technology Letters, 2013, 25, 2342-2345.	1.3	9
120	Study on Pulse Waveforms for Improving Voltage Margin and Luminous Efficacy in an AC Plasma Display Panel Having Auxiliary Electrodes. IEEE Transactions on Electron Devices, 2010, 57, 215-221.	1.6	8
121	Flexible Photoluminescent Display Fabricated With Low-Temperature Process Using PET Substrates. Journal of Display Technology, 2012, 8, 250-255.	1.3	8
122	Analysis and structure optimization of nanostructure-embedded organic light-emitting diodes. Journal of Information Display, 2013, 14, 73-77.	2.1	8
123	Analysis of Out-Coupling Mechanism in Organic Light-Emitting Diodes. IEEE Photonics Technology Letters, 2014, 26, 896-899.	1.3	8
124	Reduction intermediates of graphene oxide for low temperature reduction electrode material. RSC Advances, 2014, 4, 22476-22480.	1.7	8
125	Organic Lightâ€Emitting Diodes: Organic Lightâ€Emitting Diodes: Pushing Toward the Limits and Beyond (Adv. Mater. 35/2020). Advanced Materials, 2020, 32, 2070266.	11.1	8
126	Organic lightâ€emitting fibers and fabrics for truly wearable smart displays: Recent progress and future opportunities. Journal of the Society for Information Display, 2022, 30, 727-747.	0.8	8

#	Article	IF	CITATIONS
127	Cell proliferation effect of deep-penetrating microcavity tandem NIR OLEDs with therapeutic trend analysis. Scientific Reports, 2022, 12, .	1.6	8
128	Microdischarge in microbridge plasma display with holes in the cathode. IEEE Electron Device Letters, 1998, 19, 186-188.	2.2	7
129	Plasma display panel with Ne+ N/sub 2/ gas-mixture discharges. IEEE Transactions on Electron Devices, 2003, 50, 1440-1444.	1.6	7
130	Effect of helium addition on discharge characteristics in a flat fluorescent lamp. Journal of Applied Physics, 2005, 98, 093306.	1.1	7
131	Driving Characteristics of a High-Efficacy AC PDP With an Auxiliary Electrode. IEEE Transactions on Electron Devices, 2008, 55, 1338-1344.	1.6	7
132	Micro-pixel array of organic light-emitting diodes applying imprinting technique with a polymer replica. Applied Physics Letters, 2009, 95, 093301.	1.5	7
133	Study on the Discharge Modes of the Microplasma Generated in a Plasma Display With an Auxiliary Electrode. IEEE Transactions on Plasma Science, 2009, 37, 327-333.	0.6	7
134	An inkjet printing method: Drop and Synthesis (DAS). Application to the synthesis of ZnS:Mn nano-phosphor with a pattern. Current Applied Physics, 2010, 10, e109-e112.	1.1	7
135	Distance-dependent plasmonic enhancement via radiative transitions of Europium complex. Optics Letters, 2013, 38, 1355.	1.7	7
136	Transparent chromatic electrode using the mixture of silver nanowire and silver nanoprism. Current Applied Physics, 2014, 14, 1005-1009.	1.1	7
137	A Separate Extraction Method for Asymmetric Source and Drain Resistances Using Frequency-Dispersive C-V Characteristics in Exfoliated MoS ₂ FET. IEEE Electron Device Letters, 2016, 37, 231-233.	2.2	7
138	Electrothermal Annealing to Enhance the Electrical Performance of an Exfoliated MoS2 Field-Effect Transistor. IEEE Electron Device Letters, 2018, , 1-1.	2.2	7
139	Improved efficiency of polymer solar cells by plasmonically enhanced photon recycling. Sustainable Energy and Fuels, 2019, 3, 2597-2603.	2.5	7
140	A Flexible and Wavelengthâ€Designable Polymer Lightâ€Emitting Diode Employing Sandwichâ€Encapsulation for Wearable Skin Rejuvenation Photomedicine. Advanced Materials Interfaces, 2021, 8, 2100856.	1.9	7
141	55.2: Luminous Charcateristics Analysis of a New SDR Cell Structure AC PDP. Digest of Technical Papers SID International Symposium, 2001, 32, 1332.	0.1	6
142	Use of zeolites in the capture of charged particles from plasma. Applied Physics Letters, 2008, 93, 071507.	1.5	6
143	Enhanced cathodoluminescence from ZnS based phosphors with self-assembled ZnO nano-structures. Chemical Physics Letters, 2010, 493, 113-117.	1.2	6
144	Low-Resistive High-Work-Function Gate Electrode for Transparent a-IGZO TFTs. IEEE Transactions on Electron Devices, 2017, 64, 164-169.	1.6	6

#	Article	IF	CITATIONS
145	Resistive Switching Characteristics of Al2O3 Film for Transparent Nonvolatile Memory. IEEE Nanotechnology Magazine, 2017, 16, 1129-1131.	1.1	6
146	38â€4: Clothingâ€shaped Organic Lightâ€emitting Devices (OLEDs) for Wearable Displays. Digest of Technical Papers SID International Symposium, 2018, 49, 486-488.	0.1	6
147	Improved pulsed-memory dc plasma display with non-discharge pulses applied to the auxiliary anode. Journal of the Society for Information Display, 1993, 1, 353.	0.8	5
148	Self-assembled microarray of organic light-emitting diodes using a self-assembled monolayer by microcontact printing. Applied Physics Letters, 2009, 95, 113310.	1.5	5
149	The Effect of Disordered Microscale Holes in the Front Dielectric Layer of AC Plasma Display Panels. IEEE Transactions on Electron Devices, 2010, 57, 2183-2189.	1.6	5
150	Surface plasmon resonance enhanced photoconductivity in Cu nanoparticle films. Optics Express, 2010, 18, 16379.	1.7	5
151	Contact printing of the emitting layer for high performance multilayered phosphorescent organic light-emitting diodes. Organic Electronics, 2011, 12, 1063-1067.	1.4	5
152	28.1: OLEDs on Textile Substrates with Planarization and Encapsulation using Multilayers for Wearable Displays. Digest of Technical Papers SID International Symposium, 2014, 45, 364-366.	0.1	5
153	Quantitative analysis of enhancing extraordinary optical transmission affected by dielectric environment. Journal of Optics (United Kingdom), 2014, 16, 065005.	1.0	5
154	Investigation of voltage reduction in nanostructure-embedded organic light-emitting diodes. Organic Electronics, 2014, 15, 260-265.	1.4	5
155	Plasmonic colloidal nanoparticles with open eccentric cavities via acid-induced chemical transformation. NPG Asia Materials, 2015, 7, e167-e167.	3.8	5
156	Suppressing surface plasmon losses to improve the efficiency of blue organic light-emitting diodes using the plasmonic quasi-bandgap phenomenon. Photonics Research, 2021, 9, 1784.	3.4	5
157	The characteristics of plasma display with the cylindrical hollow cathode. IEEE Transactions on Electron Devices, 1999, 46, 2344-2347.	1.6	4
158	8.1: Improvement of the Discharge Time lag and Luminous Efficiency in an AC - PDP with 200μm Sustain Gap. Digest of Technical Papers SID International Symposium, 2004, 35, 92.	0.1	4
159	An Investigation of the Temporal Dark-Image-Sticking Phenomenon in an AC Plasma Display Panel With an Auxiliary Electrode. IEEE Transactions on Plasma Science, 2010, 38, 106-112.	0.6	4
160	P-96: Heat Transferable Thin Film Encapsulation Inserted Ag Thin Film to Improve Reliability of Flexible Displays. Digest of Technical Papers SID International Symposium, 2016, 47, 1491-1494.	0.1	4
161	Pâ€129: Zeroâ€Stress Thinâ€film Encapsulation Method for Increasing the Intrinsic Stability of Flexible OLEDs. Digest of Technical Papers SID International Symposium, 2017, 48, 1746-1749.	0.1	4
162	Effects of plasma emission on optical properties of phosphor layers in surface-type alternate current plasma display panel. Journal of Applied Physics, 2000, 87, 2073-2075.	1.1	3

#	Article	IF	CITATIONS
163	Improved luminance and luminous efficiency of AC plasma display panel. IEEE Transactions on Consumer Electronics, 2003, 49, 253-256.	3.0	3
164	P-107: High Resolution and High Luminous Efficacy AC Plasma Display Panel. Digest of Technical Papers SID International Symposium, 2006, 37, 601.	0.1	3
165	P-111: New Driving Waveforms in AC PDP with Auxiliary Electrode. Digest of Technical Papers SID International Symposium, 2006, 37, 612.	0.1	3
166	Improved discharge time lag of address pulse in an ACPDP with auxiliary electrodes. Journal of the Society for Information Display, 2008, 16, 1259-1267.	0.8	3
167	Injection of carriers from a ZnO nanostructured shell to a ZnS based microsphere core. Applied Physics Letters, 2009, 95, 022108.	1.5	3
168	Advanced discharge modes in an ac plasma display with an auxiliary electrode. Journal of Applied Physics, 2009, 106, 023304.	1.1	3
169	Effects of Various Sustain Electrode Gaps on the Discharge Characteristics of an AC PDP With an Auxiliary Electrode. IEEE Transactions on Plasma Science, 2009, 37, 2074-2081.	0.6	3
170	Nanoplasmon-Enhanced Light Emitter for AC Plasma Display Panels With Large Scalability. IEEE Transactions on Electron Devices, 2012, 59, 2727-2734.	1.6	3
171	Dependence of a Wall Voltage Variation on Priming Effects During a Reset Discharge in AC Plasma Display Panels. IEEE Transactions on Electron Devices, 2005, 52, 2824-2826.	1.6	2
172	Investigation of wall and space charges decay using pulse technique in AC plasma display panel. IEEE Transactions on Plasma Science, 2006, 34, 403-408.	0.6	2
173	The Effect of Potassium-Doped MgO Films on Discharge Characteristics in AC-Plasma Display Panel. Japanese Journal of Applied Physics, 2007, 46, 3579-3582.	0.8	2
174	49.3: <i>Invited Paper</i> : High Efficient Discharge Mode in an AC PDP with an Auxiliary Electrode. Digest of Technical Papers SID International Symposium, 2007, 38, 1530-1534.	0.1	2
175	AC Microplasma Device With a Cylindrical Hollow Electrode for Improving Luminous Efficacy. IEEE Transactions on Electron Devices, 2009, 56, 1930-1934.	1.6	2
176	Analysis of the driving characteristics for an ACPDP with an auxiliary electrode using the voltageâ€ŧransfer closed surface. Journal of the Society for Information Display, 2009, 17, 883-890.	0.8	2
177	Glass barrier ribs for a transparent AC plasma display. Journal of the Society for Information Display, 2010, 18, 717-720.	0.8	2
178	Development of a Measurement Method for the Thermal Conductivity of a Thick Film Prepared by a Screen-Printing Technique. Journal of Electronic Materials, 2012, 41, 1170-1176.	1.0	2
179	The Effect of the Ratio of Lines to Spaces for Nanolithography Using Surface Plasmons. IEEE Nanotechnology Magazine, 2014, 13, 203-207.	1.1	2
180	Pâ€148: Polymer Lightâ€Emitting Diodes Using the Dip Coating Method on Flexible Fiber Substrates for Wearable Displays. Digest of Technical Papers SID International Symposium, 2015, 46, 1753-1755.	0.1	2

#	Article	IF	CITATIONS
181	Reduction in Angular Dependence of Plasmon- Enhanced Transmission Through a Metal Layer. IEEE Photonics Technology Letters, 2015, 27, 3-6.	1.3	2
182	P-104: A Transparent, Flexible, Patternable Electrode Using a Multilayer Film Structure. Digest of Technical Papers SID International Symposium, 2016, 47, 1519-1522.	0.1	2
183	Pattern Distortion Analysis of Surface Plasmon Interference Lithography Using Line Grating Structure on Photoresist. IEEE Nanotechnology Magazine, 2016, 15, 220-224.	1.1	2
184	Pâ€127: Angle Insensitive Flexible Color Filter Electrodes. Digest of Technical Papers SID International Symposium, 2017, 48, 1738-1741.	0.1	2
185	Distortion Analysis of Periodic Ring Patterns Fabrication Using Surface Plasmon Interference Lithography With an Al Hexagonal Grating Structure on Glass. IEEE Nanotechnology Magazine, 2018, 17, 432-436.	1.1	2
186	77â€2: Stretchability Improvement of stretchable OLED by Pillar Array Substrate and Rotation Plate Structure. Digest of Technical Papers SID International Symposium, 2020, 51, 1145-1148.	0.1	2
187	41.1: Invited Paper: [Invited] Textileâ€OLEDs with high wearing comfort used for fashion displays and phototherapy applications. Digest of Technical Papers SID International Symposium, 2021, 52, 279-279.	0.1	2
188	P-64: Improvement of Color Temperature Using Address Voltage Pulse During Sustain Period of AC-PDP. Digest of Technical Papers SID International Symposium, 2001, 32, 794.	0.1	1
189	24.3: Improvement of Luminous Efficiency in AC PDP with Nano-porous Al[sub 2]O[sub 3] as Protecting Layer. Digest of Technical Papers SID International Symposium, 2004, 35, 914.	0.1	1
190	Wall Charges and Transition Voltage of Microplasma Modes in Plasma Devices With an Auxiliary Electrode. IEEE Transactions on Electron Devices, 2008, 55, 3143-3149.	1.6	1
191	A Study on the Measurement Technique of Image Retention in AC Plasma Display Panels. Journal of Display Technology, 2008, 4, 238-244.	1.3	1
192	Characteristics of the microplasma generated in a flexible plasma device. , 2008, , .		1
193	P-134: Dependency of Auxiliary Pulse Width on Luminous Efficacy in AC Plasma Display Panel. Digest of Technical Papers SID International Symposium, 2008, 39, 1705.	0.1	1
194	P-138: Driving Waveforms for Reducing Address Discharge Time Lag in an AC PDP with Auxiliary Electrodes. Digest of Technical Papers SID International Symposium, 2008, 39, 1725.	0.1	1
195	P-137: Investigation of Discharge Phenomena in AC-PDPs with an Auxiliary Electrode Using the Vt Closed Surface. Digest of Technical Papers SID International Symposium, 2008, 39, 1721.	0.1	1
196	The Discharging Characteristics of Spin-Coated MgO Thin Films with Li Dopant in a Flat Fluorescent Lamp Structure. Molecular Crystals and Liquid Crystals, 2009, 499, 205/[527]-212/[534].	0.4	1
197	P-91 : AC Plasma Display Panel with Gold Nano-particles Inserted into an MgO Protective Layer. Digest of Technical Papers SID International Symposium, 2010, 41, 1588.	0.1	1
198	Effects of Auxiliary Electrode Width in AC Plasma Display Panels With Auxiliary Electrodes. Journal of Display Technology, 2010, 6, 607-613.	1.3	1

#	Article	IF	CITATIONS
199	Dependency of Plasmonic Enhancement on the Refractive Index of the Dielectric Bottom Layer of Ag Nanoparticles. IEEE Photonics Technology Letters, 2012, 24, 882-884.	1.3	1
200	Simulation of Surface Plasmon Coupled Conjugate Polymer for Polymer Light-Emitting Diodes. Journal of Display Technology, 2012, 8, 65-69.	1.3	1
201	Photoexcitations From Intrachain and Interchain Excitons of Surface Plasmon Mediated Conjugated Polymers for PLED. Journal of Display Technology, 2012, 8, 439-443.	1.3	1
202	7.4: AC Plasma Displays with Gold Nanorods in the Protecting Layer. Digest of Technical Papers SID International Symposium, 2012, 43, 68-70.	0.1	1
203	P.61: Mold Transfer Processed Organic Light Emitting Diodes using Patterned Conductive Polymer Electrode. Digest of Technical Papers SID International Symposium, 2013, 44, 1226-1228.	0.1	1
204	Transparent OLEDs: Blur-Free Outcoupling Enhancement in Transparent Organic Light Emitting Diodes:ÂA Nanostructure Extracting Surface Plasmon Modes (Advanced Optical Materials 10/2013). Advanced Optical Materials, 2013, 1, 686-686.	3.6	1
205	Spectral Tuning of Europium Complex by Competition Between Absorption and Scattering of Gold Nanoparticles. IEEE Nanotechnology Magazine, 2014, 13, 939-944.	1.1	1
206	OLEDs: Enhanced Light Extraction from Mechanically Flexible, Nanostructured Organic Lightâ€Emitting Diodes with Plasmonic Nanomesh Electrodes (Advanced Optical Materials 9/2015). Advanced Optical Materials, 2015, 3, 1302-1302.	3.6	1
207	P-149: Oxide TFTs on Fabric Substrates for Wearable Displays. Digest of Technical Papers SID International Symposium, 2015, 46, 1756-1758.	0.1	1
208	Hybrid Plasmon-Mediated Optical Transmission in Separated Metallic Layers with Nanostructures. Plasmonics, 2015, 10, 391-398.	1.8	1
209	Highly stable 2D material (2DM) field-effect transistors (FETs) with wafer-scale multidyad encapsulation. Nanotechnology, 2017, 28, 055203.	1.3	1
210	24â€2: Stressâ€minimized and Robust Thin Film Encapsulation based on Mechanically Improved Nanolaminate and Organic Layers. Digest of Technical Papers SID International Symposium, 2018, 49, 302-305.	0.1	1
211	Pâ€110: Efficient Quantum Dot Lightâ€Emitting Diodes by Reducing Oxygen Vacancies of ZnO Nanoparticles with Recycling Process. Digest of Technical Papers SID International Symposium, 2019, 50, 1666-1668.	0.1	1
212	Pâ€120: Highâ€Mobility IGZO Thinâ€Film Transistors Fabricated on a Flexible PET Monofilament Fiber for Wearing Display. Digest of Technical Papers SID International Symposium, 2020, 51, 1822-1824.	0.1	1
213	Encapsulation Technology for Flexible OLEDs. Series in Display Science and Technology, 2021, , 129-150.	0.6	1
214	Pâ€66: A Bilayer Encapsulation with High Chemical Stability in Harsh Environments for Environmentally Robust OLEDs. Digest of Technical Papers SID International Symposium, 2021, 52, 1325-1328.	0.1	1
215	46â€1: <i>Student Paper:</i> Highâ€Performance Fiberâ€Based Red OLEDs and TFTs for Truly Wearable Textile Displays. Digest of Technical Papers SID International Symposium, 2022, 53, 577-580.	0.1	1
216	24.1: Microbridge Plasma Display Panel. Digest of Technical Papers SID International Symposium, 1998, 29, 357.	0.1	0

#	Article	IF	CITATIONS
217	P-69: Luminance and Luminous Efficiency of AC PDP with Coplanar Long-Gap and High Xe Content Gas-Mixture. Digest of Technical Papers SID International Symposium, 2004, 35, 506.	0.1	0
218	Study on the Discharge Modes in a Microplasma Device with the Auxiliary Electrode. , 2007, , .		0
219	Wall Charge Behaviors in an AC Microplasma Device with Auxiliary Electrode. , 2007, , .		0
220	Application of microplasma modes to a highly efficient light source for displays. , 2007, , .		0
221	Photoluminescent Flexible Displays. , 2008, , .		0
222	Pâ€129: The Effect of Front Dielectric Thickness on Luminous Efficacy in AC PDP with Auxiliary Electrode. Digest of Technical Papers SID International Symposium, 2008, 39, 1686-1689.	0.1	0
223	Diffusion Characteristics and Induced Electronic Channels of Magnesium in Organic Light-Emitting Diodes. Journal of Nanoscience and Nanotechnology, 2008, 8, 4958-4961.	0.9	0
224	Pâ€92: Analysis of Wall Charge Distribution in an AC PDP with an Auxiliary Electrode Using a Twoâ€Dimensional Numerical Simulation. Digest of Technical Papers SID International Symposium, 2010, 41, 1591-1594.	0.1	0
225	Pâ€82: Highly Transparent ac Plasma Display. Digest of Technical Papers SID International Symposium, 2010, 41, 1555-1557.	0.1	0
226	Numerical Analysis of Microplasma Generated in the Plasma Display Pixel With an Auxiliary Electrode. IEEE Transactions on Plasma Science, 2011, 39, 1500-1506.	0.6	0
227	P-69: Solution-based Low-cost Process using Contact Printing for the Fabrication of Organic Light-Emitting Diodes. Digest of Technical Papers SID International Symposium, 2011, 42, 1361-1363.	0.1	0
228	58.3: <i>Invited Paper</i> : Flexible Transparent Photoluminescent Display. Digest of Technical Papers SID International Symposium, 2011, 42, 855-857.	0.1	0
229	Pâ€126: Outcoupling of Waveguide Modes and Surface Plasmon Polaritons in OLEDs. Digest of Technical Papers SID International Symposium, 2012, 43, 1531-1532.	0.1	0
230	P.109: Improvement of the Outcoupling Efficiency of Blue OLEDs. Digest of Technical Papers SID International Symposium, 2013, 44, 1397-1399.	0.1	0
231	Pâ€160: Application of Graphene Oxide to Organic Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2014, 45, 1581-1582.	0.1	0
232	Transparent Electronics: Photo-Insensitive Amorphous Oxide Thin-Film Transistor Integrated with a Plasmonic Filter for Transparent Electronics (Adv. Funct. Mater. 23/2014). Advanced Functional Materials, 2014, 24, 3481-3481.	7.8	0
233	Light-Emitting Devices: High Luminance Fiber-Based Polymer Light-Emitting Devices by a Dip-Coating Method (Adv. Electron. Mater. 9/2015). Advanced Electronic Materials, 2015, 1, n/a-n/a.	2.6	0
234	Surface plasmon interference lithography using Al grating structure on glass. Proceedings of SPIE, 2015, , .	0.8	0

#	Article	IF	CITATIONS
235	Effect of LSP in Phosphor-Converted WLEDs by Application of Ag NPs With/Without Silica Shell. IEEE Photonics Technology Letters, 2016, 28, 1894-1897.	1.3	0
236	In Situ Doping System To Improve the Electric-Field-Induced Fluorescence Properties of CdZnS/ZnS Quantum Rods for Light-Emitting Devices. ACS Applied Nano Materials, 2018, 1, 4278-4282.	2.4	0
237	Pâ€98: Improved Cell Proliferation Effect on the Human Fibroblast by the Irradiation of Aging Processed PLEDs. Digest of Technical Papers SID International Symposium, 2019, 50, 1624-1626.	0.1	0
238	70â€4: Distinguished Student Paper: Flexible OLEDâ€based Photonic Skin for Attachable Phototherapeutics. Digest of Technical Papers SID International Symposium, 2020, 51, 1052-1055.	0.1	0
239	77â€4: Highâ€Efficiency Flexible Fiberâ€Based Lightâ€Emitting Devices Processed by Phosphorescent Solution. Digest of Technical Papers SID International Symposium, 2020, 51, 1152-1154.	0.1	0
240	Optical Engineering for Plasmonic Quasi-Bandgap by Effective Asymmetric Plasmonic Waveguide: Applications to High Efficiency Organic Light Emitting Diodes. , 2019, , .		0
241	Pâ€94: <i>Student Poster:</i> Colorâ€Tunable Textileâ€Based Organic Lightâ€Emitting Diodes toward a True Wearable Fashion Display. Digest of Technical Papers SID International Symposium, 2022, 53, 1373-1376.	0.1	0