
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7099984/publications.pdf Version: 2024-02-01

LUCA ROSI

#	Article	IF	CITATIONS
1	Efficient disposal of waste polyolefins through microwave assisted pyrolysis. Fuel, 2014, 116, 662-671.	6.4	131
2	Microwave pyrolysis of polymeric materials: Waste tires treatment and characterization of the value-added products. Journal of Analytical and Applied Pyrolysis, 2013, 103, 149-158.	5.5	119
3	Reverse polymerization of waste polystyrene through microwave assisted pyrolysis. Journal of Analytical and Applied Pyrolysis, 2014, 105, 35-42.	5.5	109
4	Upgraded fuel from microwave assisted pyrolysis of waste tire. Fuel, 2014, 115, 600-608.	6.4	89
5	Formic acid dehydrogenation catalysed by ruthenium complexes bearing the tripodal ligands triphos and NP ₃ . Dalton Transactions, 2013, 42, 2495-2501.	3.3	86
6	Depolymerization of polystyrene at reduced pressure through a microwave assisted pyrolysis. Journal of Analytical and Applied Pyrolysis, 2015, 113, 281-287.	5.5	74
7	Carbon from microwave assisted pyrolysis of waste tires. Journal of Analytical and Applied Pyrolysis, 2013, 104, 396-404.	5.5	71
8	Microwave assisted pyrolysis of halogenated plastics recovered from waste computers. Waste Management, 2018, 73, 511-522.	7.4	60
9	Fuel from microwave assisted pyrolysis of waste multilayer packaging beverage. Fuel, 2014, 133, 7-16.	6.4	58
10	Bio-oil from pyrolysis of wood pellets using a microwave multimode oven and different microwave absorbers. Fuel, 2015, 153, 464-482.	6.4	56
11	Isotopomeric diols by "one-pot―Ru-catalyzed homogeneous hydrogenation of dicarboxylic acids. Journal of Organometallic Chemistry, 2010, 695, 1314-1322.	1.8	49
12	A Critical Review of SCWG in the Context of Available Gasification Technologies for Plastic Waste. Applied Sciences (Switzerland), 2020, 10, 6307.	2.5	49
13	Ring Opening Polymerization of Lactide under Solventâ€Free Conditions Catalyzed by a Chlorotitanium Calix[4]arene Complex. Macromolecular Rapid Communications, 2008, 29, 1554-1560.	3.9	44
14	Straightforward synthesis of enantiopure 2-aminomethyl and 2-hydroxymethyl pyrrolidines with complete stereocontrol. Tetrahedron Letters, 2005, 46, 1287-1290.	1.4	43
15	A simple procedure for chromatographic analysis of bio-oils from pyrolysis. Journal of Analytical and Applied Pyrolysis, 2015, 114, 208-221.	5.5	42
16	Production of bio-oils and bio-char from Arundo donax through microwave assisted pyrolysis in a multimode batch reactor. Journal of Analytical and Applied Pyrolysis, 2016, 122, 479-489.	5.5	42
17	Lab-scale pyrolysis and hydrothermal carbonization of biomass digestate: Characterization of solid products and compliance with biochar standards. Biomass and Bioenergy, 2020, 139, 105593.	5.7	42
18	Bio-oil from residues of short rotation coppice of poplar using a microwave assisted pyrolysis. Journal of Analytical and Applied Pyrolysis, 2016, 119, 224-232.	5.5	37

#	Article	IF	CITATIONS
19	Conversion of poly(lactic acid) to lactide via microwave assisted pyrolysis. Journal of Analytical and Applied Pyrolysis, 2014, 110, 55-65.	5.5	36
20	Lignocellulosic Ethanol Biorefinery: Valorization of Lignin-Rich Stream through Hydrothermal Liquefaction. Energies, 2019, 12, 723.	3.1	33
21	On the behaviour of Ru(I) and Ru(II) carbonyl acetates in the presence of H2 and/or acetic acid and their role in the catalytic hydrogenation of acetic acid. Journal of Organometallic Chemistry, 2005, 690, 371-382.	1.8	32
22	Recycling of waste automobile tires: Transforming char in oxygen reduction reaction catalysts for alkaline fuel cells. Journal of Power Sources, 2019, 427, 85-90.	7.8	32
23	Inner- versus Outer-Sphere Ru-Catalyzed Formic Acid Dehydrogenation: A Computational Study. Organometallics, 2013, 32, 7053-7064.	2.3	31
24	Microwave assisted pyrolysis of corn derived plastic bags. Journal of Analytical and Applied Pyrolysis, 2014, 108, 86-97.	5.5	30
25	Pyrolysis of α-cellulose using a multimode microwave oven. Journal of Analytical and Applied Pyrolysis, 2016, 120, 284-296.	5.5	30
26	Fluoroâ€functionalized PLA polymers as potential waterâ€repellent coating materials for protection of stone. Journal of Applied Polymer Science, 2012, 125, 3125-3133.	2.6	28
27	Quinoline transfer hydrogenation by a rhodium bipyridine catalyst. Inorganica Chimica Acta, 2006, 359, 2650-2657.	2.4	27
28	Ultrahigh-Molecular-Weight Polyethylene by Using a Titanium Calix[4]arene Complex with High Thermal Stability under Polymerization Conditions. Macromolecular Chemistry and Physics, 2007, 208, 938-945.	2.2	27
29	Palladium-nanoparticles on end-functionalized poly(lactic acid)-based stereocomplexes for the chemoselective cinnamaldehyde hydrogenation: Effect of the end-group. Journal of Catalysis, 2015, 330, 187-196.	6.2	27
30	Hydrogenation of single and multiple N–N or N–O bonds by Ru(II) catalysts in homogeneous phase. Journal of Organometallic Chemistry, 2005, 690, 3641-3651.	1.8	26
31	Synthesis of dianols or BPA through catalytic hydrolyisis/glycolysis of waste polycarbonates using a microwave heating. Journal of Molecular Catalysis A, 2015, 408, 278-286.	4.8	26
32	Pd-nanoparticles supported onto functionalized poly(lactic acid)-based stereocomplexes for partial alkyne hydrogenation. Applied Catalysis A: General, 2014, 469, 132-138.	4.3	24
33	Activation of single and multiple C–N bonds by Ru(II) catalysts in homogeneous phase. Comptes Rendus Chimie, 2004, 7, 769-778.	0.5	23
34	Analysis of egg-based model wall paintings by use of an innovative combined dot-ELISA and UPLC-based approach. Analytical and Bioanalytical Chemistry, 2013, 405, 691-701.	3.7	22
35	Bio-oils from microwave assisted pyrolysis of kraft lignin operating at reduced residual pressure. Fuel, 2020, 278, 118175.	6.4	22
36	Biochar from lab-scale pyrolysis: influence of feedstock and operational temperature. Biomass Conversion and Biorefinery, 2024, 14, 5901-5911.	4.6	22

#	Article	IF	CITATIONS
37	Ruthenium carbonyl carboxylates with nitrogen containing ligands: IV. Catalytic activity in the hydroformylation of olefins in homogeneous phase. Journal of Organometallic Chemistry, 1997, 547, 35-40.	1.8	21
38	The role of functionalized phosphines in the hydrogenation of carboxylic acids in the presence of phosphine substituted hydrido ruthenium complexes. Journal of Organometallic Chemistry, 1999, 582, 218-228.	1.8	21
39	Characterization of bio-oil and bio-char produced by low-temperature microwave-assisted pyrolysis of olive pruning residue using various absorbers. Waste Management and Research, 2020, 38, 213-225.	3.9	21
40	Tandem Copolymerization: An Effective Control of the Level of Branching and Molecular Weight Distribution. Macromolecular Symposia, 2006, 236, 124-133.	0.7	19
41	Microwave assisted pyrolysis of crop residues from Vitis vinifera. Journal of Analytical and Applied Pyrolysis, 2018, 130, 305-313.	5.5	19
42	Functionalized phosphine substituted cobalt carbonyls. Synthesis, characterization and catalytic activity in the hydroformylation of olefins. Journal of Molecular Catalysis A, 1996, 112, 367-383.	4.8	18
43	Platinum nanoparticles onto pegylated poly(lactic acid) stereocomplex for highly selective hydrogenation of aromatic nitrocompounds to anilines. Applied Catalysis A: General, 2017, 537, 50-58.	4.3	18
44	Novel coatings from renewable resources for the protection of bronzes. Progress in Organic Coatings, 2014, 77, 892-903.	3.9	17
45	Polylactide/Perfluoropolyether Block Copolymers: Potential Candidates for Protective and Surface Modifiers. Macromolecular Chemistry and Physics, 2010, 211, 988-995.	2.2	16
46	Ring-Opening Polymerisation of <i>rac</i> -Lactide Using a Calix[4]arene-Based Titanium (IV) Complex. International Journal of Polymer Science, 2010, 2010, 1-6.	2.7	16
47	High glass transition temperature polyester coatings for the protection of stones. Journal of Applied Polymer Science, 2015, 132, .	2.6	16
48	Cobalt-Catalyzed Hydroformylation of Olefins in the Presence of Additional "Inert―Gases. Organometallics, 1997, 16, 4235-4236.	2.3	15
49	Microwave pyrolysis of polymeric materials. , 0, , .		15
50	Pdâ€nanoparticles stabilized by pyridineâ€functionalized poly(ethylene glycol) as catalyst for the aerobic oxidation of α,βâ€unsaturated alcohols in water. Journal of Polymer Science Part A, 2013, 51, 2518-2526.	2.3	15
51	Synthesis of functionalized polyolefins with novel applications as protective coatings for stone Cultural Heritage. Progress in Organic Coatings, 2013, 76, 1600-1607.	3.9	14
52	Traditional and innovative protective coatings for outdoor bronze: Application and performance comparison. Journal of Applied Polymer Science, 2018, 135, 46011.	2.6	14
53	Characterization of Chemically and Physically Activated Carbons from Lignocellulosic Ethanol Lignin-Rich Stream via Hydrothermal Carbonization and Slow Pyrolysis Pretreatment. Energies, 2020, 13, 4101.	3.1	14
54	Towards a better understanding of the HTL process of lignin-rich feedstock. Scientific Reports, 2021, 11, 15504.	3.3	14

#	Article	IF	CITATIONS
55	Catalytic activity of dihydride ruthenium complexes in the hydrogenation of nitrogen containing heterocycles. Inorganica Chimica Acta, 2006, 359, 917-925.	2.4	13
56	Optimisation Study of Co Deposition on Chars from MAP of Waste Tyres as Green Electrodes in ORR for Alkaline Fuel Cells. Energies, 2020, 13, 5646.	3.1	13
57	Nitrile hydration to amide in water: Palladium-based nanoparticles vs molecular catalyst. Journal of Molecular Catalysis A, 2015, 410, 26-33.	4.8	12
58	Hydrothermal Depolymerization of Biorefinery Lignin-Rich Streams: Influence of Reaction Conditions and Catalytic Additives on the Organic Monomers Yields in Biocrude and Aqueous Phase. Energies, 2020, 13, 1241.	3.1	12
59	Synthesis, Characterization, and Behavior of Hydridoruthenium Carbonyl Clusters Substituted with Functionalized Phosphines in the Presence of Hydrogen. 1. H4Ru4(CO)8[P(CH2OCOR)3]4(R = CH3â^,) Tj ETQq2	12037843	314.cgBT /Ov
60	The behaviour of n- and iso-propylcobalt tricarbonyl tributylphosphine complexes under hydroformylation conditions. Journal of Organometallic Chemistry, 1997, 535, 143-147.	1.8	10
61	Oligomerization of aldehydes catalyzed by cobalt carbonyl complexes. Journal of Molecular Catalysis A, 1998, 132, 189-201.	4.8	10
62	One-pot syntheses of alcohols from olefins through Co/Ru tandem catalysis. Journal of Molecular Catalysis A, 2007, 271, 80-85.	4.8	10
63	Methyl acrylate polymers as suitable materials for the conservation of stone: performance improvements through atom transfer radical polymerization. Journal of Coatings Technology Research, 2013, 10, 649-657.	2.5	9
64	Coupling hydrothermal liquefaction and aqueous phase reforming for integrated production of biocrude and renewable H ₂ . AICHE Journal, 2023, 69, .	3.6	9
65	Cobalt-Catalyzed Hydroformylation of Olefins in the Presence of Xenon: New Experimental Evidence for Metal–Xenon Adducts. European Journal of Inorganic Chemistry, 1999, 1999, 67-68.	2.0	8
66	Influence of an Additional Gas on the Hydroformylation and Related Reactions. European Journal of Inorganic Chemistry, 2002, 2002, 1155-1161.	2.0	8
67	A Convenient Route to the Synthesis of Isotopomeric Dihydro-2(3H)furanones. Journal of Agricultural and Food Chemistry, 2007, 55, 3877-3883.	5.2	8
68	A methodological approach to the selection of liquid reagents for chemical ionization ion trap-gas chromatography mass spectrometry: A case study of GBL and 1,4-BD. International Journal of Mass Spectrometry, 2015, 388, 34-39.	1.5	8
69	An easily recoverable and recyclable homogeneous polyester-based Pd catalytic system for the hydrogenation of α,β-unsaturated carbonyl compounds. Catalysis Communications, 2015, 69, 228-233.	3.3	8
70	L-Lactide polymerization by calix[4]arene-titanium (IV) complex using conventional heating and microwave irradiation. E-Polymers, 2010, 10, .	3.0	7
71	Design and solid phase synthesis of new DOTA conjugated (+)-biotin dimers planned to develop molecular weight-tuned avidin oligomers. Organic and Biomolecular Chemistry, 2015, 13, 3988-4001.	2.8	7
72	A low temperature transfer hydrogenation of NN, CO or CC bond using rhodium bipyridine catalysts. Inorganic Chemistry Communication, 2005, 8, 94-95.	3.9	6

#	Article	IF	CITATIONS
73	A Simple Protocol for Quantitative Analysis of Bio-Oils through Gas-Chromatography/Mass Spectrometry. European Journal of Mass Spectrometry, 2016, 22, 199-212.	1.0	6
74	Hide tanning with modified natural tannins. Journal of Applied Polymer Science, 2008, 108, 1797-1809.	2.6	5
75	Determination of GHB and its precursors (GBL and 1,4-BD) in dietary supplements through the synthesis of their isotopologues and analysis by GC–MS method. Journal of Pharmaceutical and Biomedical Analysis, 2013, 74, 31-38.	2.8	5
76	Microwave Assisted Pyrolysis of Waste Tires: Study and Design of Half-Cells SOFCs with Low Environmental Impact. ECS Transactions, 2017, 78, 1933-1940.	0.5	5
77	Valueâ€added products from waste: Slow pyrolysis of used polyethyleneâ€lined paper coffee cup waste. Canadian Journal of Chemical Engineering, 2023, 101, 1271-1285.	1.7	5
78	Palladium nanoparticles supported onto stereocomplexed poly(lactic acid)-poly(ε-caprolactone) copolymers for selective partial hydrogenation of phenylacetylene. Rendiconti Lincei, 2017, 28, 51-58.	2.2	4
79	Catalytic Performances of Platinum Containing PLLA Macrocomplex in the Hydrogenation of α,β-Unsaturated Carbonyl Compounds. Applied Sciences (Switzerland), 2019, 9, 3243.	2.5	3
80	Macromolecular Dyes by Chromophore-Initiated Ring Opening Polymerization of L-Lactide. Polymers, 2020, 12, 1979.	4.5	3
81	Aromatic triblock polymers from natural sources as protective coatings for stone surfaces. Journal of Applied Polymer Science, 2016, 133, .	2.6	2
82	From Waste to Chemicals: Bio-Oils Production Through Microwave-Assisted Pyrolysis. Biofuels and Biorefineries, 2020, , 207-231.	0.5	1
83	Nanodispersions of TiO2 in Water for Removing Acrylic Films Used in Conservation. Polymers, 2021, 13, 3966.	4.5	1
84	Enhancing biogas production in anaerobic digestion by the addition of oxidized and non-oxidized biochars. Biomass Conversion and Biorefinery, 2024, 14, 5457-5468.	4.6	1
85	Palladiumâ€Based Catalysts‧upported onto Endâ€Functionalized Poly(lactide) for C–C Double and Triple Bond Hydrogenation Reactions. , 2017, , .		0