Konda Babu Kurakula

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7099777/publications.pdf

Version: 2024-02-01

43 papers

1,407 citations

³⁶¹⁴¹³
20
h-index

36 g-index

44 all docs

44 docs citations

44 times ranked 2362 citing authors

#	Article	IF	CITATIONS
1	Bone Marrow–Specific Deficiency of Nuclear Receptor Nur77 Enhances Atherosclerosis. Circulation Research, 2012, 110, 428-438.	4.5	165
2	NR4A nuclear receptors are orphans but not lonesome. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2543-2555.	4.1	116
3	Multicenter Preclinical Validation of BET Inhibition for the Treatment of Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 910-920.	5.6	100
4	Cardiac endothelial cells express Wilms' tumor-1. Journal of Molecular and Cellular Cardiology, 2015, 81, 127-135.	1.9	90
5	Contribution of Impaired Parasympathetic Activity to Right Ventricular Dysfunction and Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension. Circulation, 2018, 137, 910-924.	1.6	83
6	TGF- \hat{l}^2 and BMPR2 Signaling in PAH: Two Black Sheep in One Family. International Journal of Molecular Sciences, 2018, 19, 2585.	4.1	78
7	Cellular senescence impairs the reversibility of pulmonary arterial hypertension. Science Translational Medicine, 2020, 12, .	12.4	74
8	Endothelial Dysfunction in Pulmonary Hypertension: Cause or Consequence?. Biomedicines, 2021, 9, 57.	3.2	59
9	Nuclear Receptor Nur77 Attenuates Airway Inflammation in Mice by Suppressing NF-κB Activity in Lung Epithelial Cells. Journal of Immunology, 2015, 195, 1388-1398.	0.8	58
10	Inhibition of GTPase Rac1 in Endothelium by 6-Mercaptopurine Results in Immunosuppression in Nonimmune Cells: New Target for an Old Drug. Journal of Immunology, 2014, 192, 4370-4378.	0.8	55
11	Protein–protein interactions of the LIM-only protein FHL2 and functional implication of the interactions relevant in cardiovascular disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 219-228.	4.1	51
12	FHL2 Protein Is a Novel Co-repressor of Nuclear Receptor Nur77. Journal of Biological Chemistry, 2011, 286, 44336-44343.	3.4	41
13	Nintedanib improves cardiac fibrosis but leaves pulmonary vascular remodelling unaltered in experimental pulmonary hypertension. Cardiovascular Research, 2019, 115, 432-439.	3.8	38
14	Thoracic Aortic Aneurysm Development in Patients with Bicuspid Aortic Valve: What Is the Role of Endothelial Cells?. Frontiers in Physiology, 2017, 8, 938.	2.8	30
15	Autophagy contributes to BMP type 2 receptor degradation andÂdevelopment of pulmonary arterial hypertension. Journal of Pathology, 2019, 249, 356-367.	4.5	30
16	Endothelial dysfunction in pulmonary arterial hypertension: loss of cilia length regulation upon cytokine stimulation. Pulmonary Circulation, 2018, 8, 1-9.	1.7	27
17	6-Mercaptopurine reduces cytokine and Muc5ac expression involving inhibition of NFκB activation in airway epithelial cells. Respiratory Research, 2015, 16, 73.	3.6	25
18	Prevention of progression of pulmonary hypertension by the Nur77 agonist 6-mercaptopurine: role of BMP signalling. European Respiratory Journal, 2019, 54, 1802400.	6.7	25

#	Article	IF	CITATIONS
19	Dual function of Pin1 in NR4A nuclear receptor activation: Enhanced activity of NR4As and increased Nur77 protein stability. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1894-1904.	4.1	24
20	The BMP Receptor 2 in Pulmonary Arterial Hypertension: When and Where the Animal Model Matches the Patient. Cells, 2020, 9, 1422.	4.1	23
21	Exacerbated inflammatory signaling underlies aberrant response to BMP9 in pulmonary arterial hypertension lung endothelial cells. Angiogenesis, 2020, 23, 699-714.	7.2	22
22	LIM-Only Protein FHL2 Is a Positive Regulator of Liver X Receptors in Smooth Muscle Cells Involved in Lipid Homeostasis. Molecular and Cellular Biology, 2015, 35, 52-62.	2.3	19
23	The LIM-Only Protein FHL2 Reduces Vascular Lesion Formation Involving Inhibition of Proliferation and Migration of Smooth Muscle Cells. PLoS ONE, 2014, 9, e94931.	2.5	17
24	Altered TGFβ/SMAD Signaling in Human and Rat Models of Pulmonary Hypertension: An Old Target Needs Attention. Cells, 2021, 10, 84.	4.1	16
25	Nuclear Receptors in atherosclerosis: A superfamily with many â€~Goodfellas'. Molecular and Cellular Endocrinology, 2013, 368, 71-84.	3.2	14
26	Deficiency of <scp>FHL</scp> 2 attenuates airway inflammation in mice and genetic variation associates with human bronchial hyperâ€responsiveness. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1531-1544.	5.7	14
27	Structural and cellular mechanisms of peptidyl-prolyl isomerase Pin1-mediated enhancement of Tissue Factor gene expression, protein half-life, and pro-coagulant activity. Haematologica, 2018, 103, 1073-1082.	3.5	13
28	The Inflammatory Profile of CTEPH-Derived Endothelial Cells Is a Possible Driver of Disease Progression. Cells, 2021, 10, 737.	4.1	13
29	Increased MAO-A Activity Promotes Progression of Pulmonary Arterial Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 331-343.	2.9	12
30	The Effects of Mercaptopurine on Pulmonary Vascular Resistance and BMPR2 Expression in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 296-299.	5.6	10
31	LIMâ€only protein FHL2 regulates experimental pulmonary <i>Schistosoma mansoni</i> egg granuloma formation. European Journal of Immunology, 2015, 45, 3098-3106.	2.9	9
32	Derivation and characterisation of endothelial cells from patients with chronic thromboembolic pulmonary hypertension. Scientific Reports, 2021, 11, 18797.	3.3	9
33	Effects of 6-mercaptopurine in pressure overload induced right heart failure. PLoS ONE, 2019, 14, e0225122.	2.5	8
34	Inhibition of the prolyl isomerase Pin1 improves endothelial function and attenuates vascular remodelling in pulmonary hypertension by inhibiting TGF-β signalling. Angiogenesis, 2022, 25, 99-112.	7.2	8
35	Regulatory RNAs controlling vascular (dys)function by affecting TGF-ß family signalling. EXCLI Journal, 2015, 14, 832-50.	0.7	8
36	LIM-only protein FHL2 attenuates inflammation in vascular smooth muscle cells through inhibition of the NFκB pathway. Vascular Pharmacology, 2020, 125-126, 106634.	2.1	7

3

#	Article	IF	CITATIONS
37	Endothelial Colony Forming Cells as an Autologous Model to Study Endothelial Dysfunction in Patients with a Bicuspid Aortic Valve. International Journal of Molecular Sciences, 2019, 20, 3251.	4.1	6
38	LIM-only protein FHL2 attenuates vascular tissue factor activity, inhibits thrombus formation in mice and FHL2 genetic variation associates with human venous thrombosis. Haematologica, 2020, 105, 1677-1685.	3.5	4
39	Volume Load-Induced Right Ventricular Failure in Rats Is Not Associated With Myocardial Fibrosis. Frontiers in Physiology, 2021, 12, 557514.	2.8	3
40	BMP Receptor Inhibition Enhances Tissue Repair in Endoglin Heterozygous Mice. International Journal of Molecular Sciences, 2021, 22, 2010.	4.1	2
41	Reply to Piquereau and Perros and to Pullamsetti and de Jesus Perez. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 1190-1191.	5.6	1
42	The effect of 6-mercaptopurine treatment on experimentally induced pulmonary arterial hypertension. , $2017,$		0
43	HDAC inhibitor quisinostat reduces pulmonary vascular remodeling in experimentally induced pulmonary arterial hypertension. , 2020, , .		0