Zhe-Shuai Lin

List of Publications by Citations

Source: https://exaly.com/author-pdf/7099468/zhe-shuai-lin-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

485 17,703 70 111 h-index g-index citations papers 6.8 21,675 569 7.2 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
485	New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 20948-52	3.4	401
484	NaSr3Be3B3O9F4: a promising deep-ultraviolet nonlinear optical material resulting from the cooperative alignment of the [Be3B3O12F](10-) anionic group. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 9141-4	16.4	319
483	The development of new borate-based UV nonlinear optical crystals. <i>Applied Physics B: Lasers and Optics</i> , 2005 , 80, 1-25	1.9	315
482	Beryllium-free Li4Sr(BO3)2 for deep-ultraviolet nonlinear optical applications. <i>Nature Communications</i> , 2014 , 5, 4019	17.4	310
481	Interstitial P-Doped CdS with Long-Lived Photogenerated Electrons for Photocatalytic Water Splitting without Sacrificial Agents. <i>Advanced Materials</i> , 2018 , 30, 1705941	24	304
480	Two Novel Bi-Based Borate Photocatalysts: Crystal Structure, Electronic Structure, Photoelectrochemical Properties, and Photocatalytic Activity under Simulated Solar Light Irradiation. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 22986-22994	3.8	303
479	Metal Thiophosphates with Good Mid-infrared Nonlinear Optical Performances: A First-Principles Prediction and Analysis. <i>Journal of the American Chemical Society</i> , 2015 , 137, 13049-59	16.4	264
478	BaGa4Se7: a new congruent-melting IR nonlinear optical material. <i>Inorganic Chemistry</i> , 2010 , 49, 9212-6	5.1	260
477	A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation. <i>Scientific Reports</i> , 2013 , 3, 3383	4.9	252
476	2012,		234
475	Deep-ultraviolet transparent phosphates RbBa2(PO3)5 and Rb2Ba3(P2O7)2 show nonlinear optical activity from condensation of [PO4](3-) units. <i>Journal of the American Chemical Society</i> , 2014 , 136, 8560-	- 3 6.4	227
474	Pressure-Induced Phase Transformation, Reversible Amorphization, and Anomalous Visible Light Response in Organolead Bromide Perovskite. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1114	416.4	226
473	MBOF (M = Ca, Sr): Two Noncentrosymmetric Alkaline Earth Fluorooxoborates as Promising Next-Generation Deep-Ultraviolet Nonlinear Optical Materials. <i>Journal of the American Chemical Society</i> , 2018 , 140, 3884-3887	16.4	209
472	Mid-Infrared Nonlinear Optical Materials Based on Metal Chalcogenides: Structure P roperty Relationship. <i>Crystal Growth and Design</i> , 2017 , 17, 2254-2289	3.5	206
47 ¹	Beryllium-free Rb3Al3B3O10F with reinforced interlayer bonding as a deep-ultraviolet nonlinear optical crystal. <i>Journal of the American Chemical Society</i> , 2015 , 137, 2207-10	16.4	206
470	Analysis and prediction of mid-IR nonlinear optical metal sulfides with diamond-like structures. <i>Coordination Chemistry Reviews</i> , 2017 , 333, 57-70	23.2	205
469	Designing a Beryllium-Free Deep-Ultraviolet Nonlinear Optical Material without a Structural Instability Problem. <i>Journal of the American Chemical Society</i> , 2016 , 138, 2961-4	16.4	185

468	Molecular Engineering Design to Resolve the Layering Habit and Polymorphism Problems in Deep UV NLO Crystals: New Structures in MM?Be2B2O6F (M?Na, M??Ca; M? K, M??Ca, Sr). <i>Chemistry of Materials</i> , 2011 , 23, 5457-5463	9.6	172
467	Inorganic Colloidal Perovskite Quantum Dots for Robust Solar CO Reduction. <i>Chemistry - A European Journal</i> , 2017 , 23, 9481-9485	4.8	161
466	First-principles materials applications and design of nonlinear optical crystals. <i>Journal Physics D: Applied Physics</i> , 2014 , 47, 253001	3	159
465	Nanostructured Ni2 P as a Robust Catalyst for the Hydrolytic Dehydrogenation of Ammonia-Borane. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 15725-9	16.4	158
464	Tailored synthesis of a nonlinear optical phosphate with a short absorption edge. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 4217-21	16.4	157
463	Simultaneously efficient light absorption and charge transport of phosphate and oxygen-vacancy confined in bismuth tungstate atomic layers triggering robust solar CO2 reduction. <i>Nano Energy</i> , 2017 , 32, 359-366	17.1	153
462	Microspheric Na2Ti3O7 consisting of tiny nanotubes: an anode material for sodium-ion batteries with ultrafast charge-discharge rates. <i>Nanoscale</i> , 2013 , 5, 594-9	7.7	150
461	Rational Design of the First Lead/Tin Fluorooxoborates MBOF (M = Pb, Sn), Containing Flexible Two-Dimensional [BOF] Single Layers with Widely Divergent Second Harmonic Generation Effects. Journal of the American Chemical Society, 2018, 140, 6814-6817	16.4	148
460	Mechanical tunability via hydrogen bonding in metal-organic frameworks with the perovskite architecture. <i>Journal of the American Chemical Society</i> , 2014 , 136, 7801-4	16.4	146
459	"All-Three-in-One": A New Bismuth-Tellurium-Borate BiTeBO Exhibiting Strong Second Harmonic Generation Response. <i>Journal of the American Chemical Society</i> , 2016 , 138, 14190-14193	16.4	141
458	BaGa2MQ6 (M = Si, Ge; Q = S, Se): a new series of promising IR nonlinear optical materials. <i>Dalton Transactions</i> , 2012 , 41, 5653-61	4.3	141
457	Analysis of Deep-UV Nonlinear Optical Borates: Approaching the End. <i>Advanced Optical Materials</i> , 2014 , 2, 411-417	8.1	136
456	Trigonal Planar [HgSe3](4-) Unit: A New Kind of Basic Functional Group in IR Nonlinear Optical Materials with Large Susceptibility and Physicochemical Stability. <i>Journal of the American Chemical Society</i> , 2016 , 138, 6135-8	16.4	135
455	Non-Centrosymmetric RbNaMgPO with Unprecedented Thermo-Induced Enhancement of Second Harmonic Generation. <i>Journal of the American Chemical Society</i> , 2018 , 140, 1592-1595	16.4	134
454	NH Be BO F and EBe BO F: Overcoming the Layering Habit in KBe BO F for the Next-Generation Deep-Ultraviolet Nonlinear Optical Materials. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8968	3 -1891 2	127
453	Self-Supported Cedarlike Semimetallic Cu3P Nanoarrays as a 3D High-Performance Janus Electrode for Both Oxygen and Hydrogen Evolution under Basic Conditions. <i>ACS Applied Materials & Lamp; Interfaces</i> , 2016 , 8, 23037-48	9.5	124
452	Rational Design of Deep-Ultraviolet Nonlinear Optical Materials in Fluorooxoborates: Toward Optimal Planar Configuration. <i>Chemistry of Materials</i> , 2017 , 29, 7098-7102	9.6	113
451	A new mixed halide, Cs2HgI2Cl2: molecular engineering for a new nonlinear optical material in the infrared region. <i>Journal of the American Chemical Society.</i> 2012 . 134. 14818-22	16.4	111

450	Comparative investigations of the crystal structure and photoluminescence property of eulytite-type Ba3Eu(PO4)3 and Sr3Eu(PO4)3. <i>Dalton Transactions</i> , 2015 , 44, 7679-86	4.3	110
449	Mechanism for linear and nonlinear optical effects in monoclinic bismuth borate (BiB3O6) crystal. Journal of Applied Physics, 2001 , 90, 5585-5590	2.5	108
448	Two Non-EConjugated Deep-UV Nonlinear Optical Sulfates. <i>Journal of the American Chemical Society</i> , 2019 , 141, 3833-3837	16.4	107
447	Recent advances and future perspectives on infrared nonlinear optical metal halides. <i>Coordination Chemistry Reviews</i> , 2019 , 380, 83-102	23.2	103
446	Efficient and Selective CO2 Reduction Integrated with Organic Synthesis by Solar Energy. <i>CheM</i> , 2019 , 5, 2605-2616	16.2	102
445	First-Principles Design and Simulations Promote the Development of Nonlinear Optical Crystals. <i>Accounts of Chemical Research</i> , 2020 , 53, 209-217	24.3	101
444	First principles selection and design of mid-IR nonlinear optical halide crystals. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 7363	7.1	99
443	ABi (IO) F (A=K, Rb, and Cs): A Combination of Halide and Oxide Anionic Units To Create a Large Second-Harmonic Generation Response with a Wide Bandgap. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 9492-9496	16.4	96
442	First-Principles Evaluation of the Alkali and/or Alkaline Earth Beryllium Borates in Deep Ultraviolet Nonlinear Optical Applications. <i>ACS Photonics</i> , 2015 , 2, 1183-1191	6.3	96
441	Sb3+ Dopant and Halogen Substitution Triggered Highly Efficient and Tunable Emission in Lead-Free Metal Halide Single Crystals. <i>Chemistry of Materials</i> , 2020 , 32, 5327-5334	9.6	96
440	AZn2BO3X2(A = K, Rb, NH4; X = Cl, Br): New Members of KBBF Family Exhibiting Large SHG Response and the Enhancement of Layer Interaction by Modified Structures. <i>Chemistry of Materials</i> , 2016 , 28, 9122-9131	9.6	95
439	Deep-Ultraviolet Transparent Cs2LiPO4 Exhibits an Unprecedented Second Harmonic Generation. <i>Chemistry of Materials</i> , 2016 , 28, 7110-7116	9.6	92
438	Mechanism for linear and nonlinear optical effects in LiB3O5, CsB3O5, and CsLiB6O10 crystals. <i>Physical Review B</i> , 2000 , 62, 1757-1764	3.3	92
437	LiGaGe2Se6: a new IR nonlinear optical material with low melting point. <i>Inorganic Chemistry</i> , 2012 , 51, 1035-40	5.1	90
436	PbGaF(SeO)Cl: Band Engineering Strategy by Aliovalent Substitution for Enlarging Bandgap while Keeping Strong Second Harmonic Generation Response. <i>Journal of the American Chemical Society</i> , 2019 , 141, 748-752	16.4	90
435	Near-Zero Thermal Expansion and High Ultraviolet Transparency in a Borate Crystal of Zn B O. <i>Advanced Materials</i> , 2016 , 28, 7936-7940	24	89
434	Bi2(IO4)(IO3)3: a new potential infrared nonlinear optical material containing [IO4](3-) anion. <i>Inorganic Chemistry</i> , 2011 , 50, 12818-22	5.1	88
433	Optically Modulated Ultra-Broad-Band Warm White Emission in Mn2+-Doped (C6H18N2O2)PbBr4 Hybrid Metal Halide Phosphor. <i>Chemistry of Materials</i> , 2019 , 31, 5788-5795	9.6	87

432	Crystal Growth, Optical Properties Measurement, and Theoretical Calculation of BPO4. <i>Chemistry of Materials</i> , 2004 , 16, 2906-2908	9.6	87
431	Mechanism of linear and nonlinear optical effects of chalcopyrite AgGaX2 (X=S, Se, and Te) crystals. Journal of Chemical Physics, 2004 , 120, 8772-8	3.9	84
430	Perovskite-based nanocubes with simultaneously improved visible-light absorption and charge separation enabling efficient photocatalytic CO2 reduction. <i>Nano Energy</i> , 2016 , 30, 59-68	17.1	83
429	A new UV nonlinear optical material CsZn2B3O7: ZnO4 tetrahedra double the efficiency of second-harmonic generation. <i>Inorganic Chemistry</i> , 2014 , 53, 2521-7	5.1	82
428	Prospects for Fluoride Carbonate Nonlinear Optical Crystals in the UV and Deep-UV Regions. Journal of Physical Chemistry C, 2013 , 117, 25684-25692	3.8	82
427	Heavy Mn2+ Doped MgAl2O4 Phosphor for High-Efficient Near-Infrared Light-Emitting Diode and the Night-Vision Application. <i>Advanced Optical Materials</i> , 2019 , 7, 1901105	8.1	81
426	Pushing Nonlinear Optical Oxides into the Mid-Infrared Spectral Region Beyond 10 lb: Design, Synthesis, and Characterization of LaSnGaO. <i>Journal of the American Chemical Society</i> , 2018 , 140, 4684-4	4 6 9 0	80
425	RbIO3 and RbIO2F2: Two Promising Nonlinear Optical Materials in Mid-IR Region and Influence of Partially Replacing Oxygen with Fluorine for Improving Laser Damage Threshold. <i>Chemistry of Materials</i> , 2016 , 28, 1413-1418	9.6	80
424	Mechanism of linear and nonlinear optical effects of KDP and urea crystals. <i>Journal of Chemical Physics</i> , 2003 , 118, 2349-2356	3.9	80
423	Molecular Construction Using (C3N3O3)3[Anions: Analysis and Prospect for Inorganic Metal Cyanurates Nonlinear Optical Materials. <i>Crystal Growth and Design</i> , 2017 , 17, 4015-4020	3.5	79
422	Highly efficient hydrolysis of ammonia borane by anion (OH, F, Cl)-tuned interactions between reactant molecules and CoP nanoparticles. <i>Chemical Communications</i> , 2017 , 53, 705-708	5.8	79
421	Tunable thermal expansion in framework materials through redox intercalation. <i>Nature Communications</i> , 2017 , 8, 14441	17.4	76
420	Atomically Thin Mesoporous In2O3½/In2S3 Lateral Heterostructures Enabling Robust Broadband-Light Photo-Electrochemical Water Splitting. <i>Advanced Energy Materials</i> , 2018 , 8, 1701114	21.8	75
419	Noncentrosymmetric chalcohalide NaBa4Ge3S10Cl with large band gap and IR NLO response. Journal of Materials Chemistry C, 2014 , 2, 4590-4596	7.1	75
418	An outstanding second-harmonic generation material BiB2O4F: exploiting the electron-withdrawing ability of fluorine. <i>Inorganic Chemistry Frontiers</i> , 2015 , 2, 170-176	6.8	73
417	Microscopic characteristics of the Ag(111)InO(0001) interface present in optical coatings. <i>Physical Review B</i> , 2007 , 75,	3.3	73
416	Electronic structure of 印 LRbSm(MoO Land chemical bonding in molybdates. <i>Dalton Transactions</i> , 2015 , 44, 1805-15	4.3	71
415	Cooperation of Three Chromophores Generates the Water-Resistant Nitrate Nonlinear Optical Material Bi TeO OH(NO). <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 540-544	16.4	70

414	An Unprecedented Antimony(III) Borate with Strong Linear and Nonlinear Optical Responses. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 7793-7796	16.4	70
413	Ab initio studies on the mechanism for linear and nonlinear optical effects in YAl3(BO3)4. <i>Journal of Applied Physics</i> , 2011 , 109, 103510	2.5	70
412	Novel Bi-based iodate photocatalysts with high photocatalytic activity. <i>Inorganic Chemistry Communication</i> , 2014 , 40, 215-219	3.1	69
411	Two novel nonlinear optical carbonates in the deep-ultraviolet region: KBeCO3F and RbAlCO3F2. <i>Scientific Reports</i> , 2013 , 3, 1366	4.9	69
410	Metallic Co2C: A Promising Co-catalyst To Boost Photocatalytic Hydrogen Evolution of Colloidal Quantum Dots. <i>ACS Catalysis</i> , 2018 , 8, 5890-5895	13.1	69
409	Two-Dimensional-Layered Perovskite ALaTaO:Bi (A = K and Na) Phosphors with Versatile Structures and Tunable Photoluminescence. <i>ACS Applied Materials & Discrete Amplied Materials & Discrete </i>	9.5	69
408	BaHgGeSe4 and SrHgGeSe4: Two New Hg-Based Infrared Nonlinear Optical Materials. <i>Chemistry of Materials</i> , 2019 , 31, 3034-3040	9.6	68
407	Hg-Based Infrared Nonlinear Optical Material KHg4Ga5Se12 Exhibits Good Phase-Matchability and Exceptional Second Harmonic Generation Response. <i>Chemistry of Materials</i> , 2017 , 29, 7993-8002	9.6	68
406	First-Principles Design of a Deep-Ultraviolet Nonlinear-Optical Crystal from KBe2BO3F2 to NH4Be2BO3F2. <i>Inorganic Chemistry</i> , 2015 , 54, 10533-5	5.1	66
405	Single crystalline VO2 nanosheets: A cathode material for sodium-ion batteries with high rate cycling performance. <i>Journal of Power Sources</i> , 2014 , 250, 181-187	8.9	65
404	K5(W3O9F4)(IO3): An Efficient Mid-Infrared Nonlinear Optical Compound with High Laser Damage Threshold. <i>Chemistry of Materials</i> , 2019 , 31, 10100-10108	9.6	64
403	PbGa4S7: a wide-gap nonlinear optical material. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 3060-3067	7.1	62
402	Strategy for the optical property studies in ultraviolet nonlinear optical crystals from density functional theory. <i>Computational Materials Science</i> , 2012 , 60, 99-104	3.2	62
401	NaSr3Be3B3O9F4: A Promising Deep-Ultraviolet Nonlinear Optical Material Resulting from the Cooperative Alignment of the [Be3B3O12F]10[Anionic Group. <i>Angewandte Chemie</i> , 2011 , 123, 9307-931	ıð ^{.6}	61
400	Pb2BO3Br: a novel nonlinear optical lead borate bromine with a KBBF-type structure exhibiting strong nonlinear optical response. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 916-921	6.8	60
399	Flux Crystal Growth and the Electronic Structure of BaFe12O19 Hexaferrite. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 5114-5123	3.8	60
398	Mechanism for linear and nonlinear optical effects in KBe2BO3F2 (KBBF) crystal. <i>Chemical Physics Letters</i> , 2003 , 367, 523-527	2.5	57
397	Lead-Free Hybrid Metal Halides with a Green-Emissive [MnBr] Unit as a Selective Turn-On Fluorescent Sensor for Acetone. <i>Inorganic Chemistry</i> , 2019 , 58, 13464-13470	5.1	56

396	Sr Cd Sb O S : Strong SHG Response Activated by Highly Polarizable Sb/O/S Groups. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 8078-8081	16.4	56
395	Lone-Pair Enhanced Birefringence in an Alkaline-Earth Metal Tin(II) Phosphate BaSn (PO). <i>Chemistry - A European Journal</i> , 2019 , 25, 5648-5651	4.8	56
394	Theoretical calculations and predictions of the nonlinear optical coefficients of borate crystals. Journal of Physics Condensed Matter, 2001 , 13, R369-R384	1.8	56
393	Regulating Second-Harmonic Generation by van der Waals Interactions in Two-dimensional Lead Halide Perovskite Nanosheets. <i>Journal of the American Chemical Society</i> , 2019 , 141, 9134-9139	16.4	54
392	Midinfrared Nonlinear Optical Thiophosphates from LiZnPS4 to AgZnPS4: A Combined Experimental and Theoretical Study. <i>Inorganic Chemistry</i> , 2016 , 55, 3724-6	5.1	54
391	Giant Optical Anisotropy in the UV-Transparent 2D Nonlinear Optical Material Sc(IO) (NO). Angewandte Chemie - International Edition, 2021 , 60, 3464-3468	16.4	54
390	A combination of multiple chromophores enhances second-harmonic generation in a nonpolar noncentrosymmetric oxide: CdTeMoO6. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 2906	7.1	53
389	Ba2M(C3N3O3)2 (M = Mg, Ca): potential UV birefringent materials with strengthened optical anisotropy originating from the (C3N3O3)3[group. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 12879-1286	8 7 .1	53
388	Metallic Bond-Enabled Wetting Behavior at the Liquid Ga/CuGa Interfaces. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 9203-9210	9.5	52
387	The role of dipole moment in determining the nonlinear optical behavior of materials: ab initio studies on quaternary molybdenum tellurite crystals. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 530-537	7.1	52
386	Mechanism of linear and nonlinear optical effects of chalcopyrites LiGaX2 (X=S, Se, and Te) crystals. Journal of Applied Physics, 2008 , 103, 083111	2.5	52
385	Nitrate nonlinear optical crystals: A survey on structure-performance relationships. <i>Coordination Chemistry Reviews</i> , 2019 , 400, 213045	23.2	50
384	Tailored Synthesis of a Nonlinear Optical Phosphate with a Short Absorption Edge. <i>Angewandte Chemie</i> , 2015 , 127, 4291-4295	3.6	50
383	Exploration on anion ordering, optical properties and electronic structure in K3WO3F3 elpasolite. Journal of Solid State Chemistry, 2012 , 187, 159-164	3.3	50
382	BaBe2BO3F3: A KBBF-Type Deep-Ultraviolet Nonlinear Optical Material with Reinforced [Be2BO3F2] Layers and Short Phase-Matching Wavelength. <i>Chemistry of Materials</i> , 2016 , 28, 8871-8875	9.6	50
381	Growth and structure redetermination of a nonlinear BaAlBO3F2 crystal. <i>Solid State Sciences</i> , 2011 , 13, 875-878	3.4	49
380	A new fourier transform approach for protein coding measure based on the format of the Z curve. <i>Bioinformatics</i> , 1998 , 14, 685-90	7.2	49
379	Room-Temperature Ultrabroadband Photodetection with MoS by Electronic-Structure Engineering Strategy. <i>Advanced Materials</i> , 2018 , 30, e1804858	24	49

378	BaGa2SnSe6: a new phase-matchable IR nonlinear optical material with strong second harmonic generation response. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10998-11004	7.1	47
377	A2BiI5O15 (A = K+ or Rb+): two new promising nonlinear optical materials containing [I3O9]3 bridging anionic groups. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 4057-4062	7.1	47
376	Designing a Deep-UV Nonlinear Optical Fluorooxosilicophosphate. <i>Journal of the American Chemical Society</i> , 2020 , 142, 6472-6476	16.4	46
375	Inherent laws between tetrahedral arrangement pattern and optical performance in tetrahedron-based mid-infrared nonlinear optical materials. <i>Coordination Chemistry Reviews</i> , 2020 , 421, 213444	23.2	46
374	Large Second-Harmonic Response and Giant Birefringence of CeF(SO) Induced by Highly Polarizable Polyhedra. <i>Journal of the American Chemical Society</i> , 2021 , 143, 4138-4142	16.4	46
373	Enhanced photocatalytic H2-evolution by immobilizing CdS nanocrystals on ultrathin Co0.85Se/RGOPEI nanosheets. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 18711-18717	13	45
372	Enhancing Photoluminescence Quantum Yield in 0D Metal Halides by Introducing Water Molecules. <i>Advanced Functional Materials</i> , 2020 , 30, 2002468	15.6	45
371	LiCsBO(OH): A Deep-Ultraviolet Nonlinear-Optical Mixed-Alkaline Borate Constructed by Unusual Heptaborate Anions. <i>Inorganic Chemistry</i> , 2019 , 58, 1755-1758	5.1	45
370	Colossal Volume Contraction in Strong Polar Perovskites of Pb(Ti,V)O. <i>Journal of the American Chemical Society</i> , 2017 , 139, 14865-14868	16.4	44
369	Inorganic planar Etonjugated groups in nonlinear optical crystals: review and outlook. <i>Inorganic Chemistry Frontiers</i> , 2020 , 7, 839-852	6.8	44
368	Bandgaps in the deep ultraviolet borate crystals: Prediction and improvement. <i>Applied Physics Letters</i> , 2013 , 102, 231904	3.4	44
367	BaAl4Se7: a new infrared nonlinear optical material with a large band gap. <i>Dalton Transactions</i> , 2011 , 40, 3610-5	4.3	44
366	Co-crystal LiCl[[HCNO]: a promising solar-blind nonlinear optical crystal with giant nonlinearity from coplanar Econjugated groups. <i>Chemical Communications</i> , 2019 , 55, 6257-6260	5.8	42
365	Collaborative enhancement from Pb and F in Pb(NO)(HO)F generates the largest second harmonic generation effect among nitrates. <i>Chemical Communications</i> , 2017 , 53, 9398-9401	5.8	42
364	NH4Be2BO3F2 and Be2BO3F: Overcoming the Layering Habit in KBe2BO3F2 for the Next-Generation Deep-Ultraviolet Nonlinear Optical Materials. <i>Angewandte Chemie</i> , 2018 , 130, 9106-91	30 ⁶	42
363	Rational Design of the Nonlinear Optical Response in a Tin Iodate Fluoride Sn(IO3)2F2. <i>Chemistry of Materials</i> , 2020 , 32, 2615-2620	9.6	41
362	Lead-Free Tin(IV)-Based Organic-Inorganic Metal Halide Hybrids with Excellent Stability and Blue-Broadband Emission. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 1808-1813	6.4	41
361	LiGaGeS: A Chalcogenide with Good Infrared Nonlinear Optical Performance and Low Melting Point. <i>Inorganic Chemistry</i> , 2017 , 56, 13267-13273	5.1	40

360	ReBe2B5O11 (Re = Y, Gd): rare-earth beryllium borates as deep-ultraviolet nonlinear-optical materials. <i>Inorganic Chemistry</i> , 2014 , 53, 1952-4	5.1	40
359	Isotropic Negative Area Compressibility over Large Pressure Range in Potassium Beryllium Fluoroborate and its Potential Applications in Deep Ultraviolet Region. <i>Advanced Materials</i> , 2015 , 27, 4851-7	24	40
358	Broadening Frontiers of Infrared Nonlinear Optical Materials with EConjugated Trigonal-Planar Groups. <i>Chemistry of Materials</i> , 2019 , 31, 1110-1117	9.6	40
357	A Deep-Ultraviolet Nonlinear Optical Crystal: Strontium Beryllium Borate Fluoride with Planar Be(O/F)3Groups. <i>Chemistry of Materials</i> , 2016 , 28, 4563-4571	9.6	39
356	CsZn BO X (X =F , Cl , and FCl): A Series of Beryllium-Free Deep-Ultraviolet Nonlinear-Optical Crystals with Excellent Properties. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 19006-19010	16.4	39
355	Ba3(C3N3O3)2: A New Phase of Barium Cyanurate Containing Parallel Econjugated Groups as a Birefringent Material Replacement for Calcite. <i>Crystal Growth and Design</i> , 2019 , 19, 568-572	3.5	38
354	Synthesis, Crystal Structure and Green Luminescence in Zero-Dimensional Tin Halide (CHN)SnBr. <i>Inorganic Chemistry</i> , 2020 , 59, 9962-9968	5.1	37
353	Y(IOโโ a novel photocatalyst: synthesis, characterization, and highly efficient photocatalytic activity. <i>Inorganic Chemistry</i> , 2014 , 53, 8114-9	5.1	37
352	Ba6Sn6Se13: a new mixed valence selenostannate with NLO property. <i>Dalton Transactions</i> , 2013 , 42, 13635-41	4.3	37
351	Sr8MgB18O36: a new alkaline-earth borate with a novel zero-dimensional (B18O36)18- anion ring. <i>Inorganic Chemistry</i> , 2013 , 52, 8291-3	5.1	37
350	Borate-Based Ultraviolet and Deep-Ultraviolet Nonlinear Optical Crystals. <i>Crystals</i> , 2017 , 7, 95	2.3	36
349	Cs3Na(H2C3N3O3)4BH2O: A Mixed Alkali-Metal Hydroisocyanurate Nonlinear Optical Material Containing Econjugated Six-Membered-Ring Units. <i>European Journal of Inorganic Chemistry</i> , 2019 , 2019, 2791-2795	2.3	35
348	A beryllium-free deep-UV nonlinear optical material CsNaMgP2O7 with honeycomb-like topological layers. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 3910-3916	7.1	35
347	Design and synthesis of a nonlinear optical material BaAl4S7 with a wide band gap inspired from SrB4O7. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 2684-2689	7.1	35
346	SnGa2GeS6: synthesis, structure, linear and nonlinear optical properties. <i>Dalton Transactions</i> , 2015 , 44, 7404-10	4.3	34
345	Molecular Construction from AgGaS2 to CuZnPS4: Defect-Induced Second Harmonic Generation Enhancement and Cosubstitution-Driven Band Gap Enlargement. <i>Chemistry of Materials</i> , 2020 , 32, 3288	3-3296	34
344	A2Bi2(SO4)2Cl4 (A = NH4, K, Rb): achieving a subtle balance of the large second harmonic generation effect and sufficient birefringence in sulfate nonlinear optical materials. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 9900-9907	7.1	34
343	Noncentrosymmetric Cubic Cyanurate KCd(CNO) Containing Isolated Planar EConjugated (CNO) Groups. <i>Inorganic Chemistry</i> , 2018 , 57, 32-36	5.1	34

342	In Situ Phase-Induced Spatial Charge Separation in CoreBhell Oxynitride Nanocube Heterojunctions Realizing Robust Solar Water Splitting. <i>Advanced Energy Materials</i> , 2017 , 7, 1700171	21.8	33
341	A study on K2SbF2Cl3 as a new mid-IR nonlinear optical material: new synthesis and excellent properties. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 9588-9593	7.1	33
340	ZnPS: A Promising Infrared Nonlinear-Optical Material with Excellent Overall Properties. <i>Inorganic Chemistry</i> , 2018 , 57, 10503-10506	5.1	33
339	Area negative thermal expansion in a beryllium borate LiBeBO3 with edge sharing tetrahedra. <i>Chemical Communications</i> , 2014 , 50, 13499-501	5.8	33
338	Ab initio studies on the optical effects in the deep ultraviolet nonlinear optical crystals of the KBe2BO3F2 family. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 335503	1.8	33
337	Highly Efficient Photocatalytic System Constructed from CoP/Carbon Nanotubes or Graphene for Visible-Light-Driven CO Reduction. <i>Chemistry - A European Journal</i> , 2018 , 24, 4273-4278	4.8	32
336	Structural, Spectroscopic, and Electronic Properties of Cubic G0-Rb2KTiOF5 Oxyfluoride. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 7269-7278	3.8	32
335	A new ultraviolet transparent hydra-cyanurate K(CNOH) with strong optical anisotropy from delocalized Ebonds. <i>Dalton Transactions</i> , 2019 , 48, 2271-2274	4.3	31
334	Removal of A-Site Alkali and Alkaline Earth Metal Cations in KBeBOF-Type Layered Structures To Enhance the Deep-Ultraviolet Nonlinear Optical Capability. <i>Inorganic Chemistry</i> , 2018 , 57, 11146-11156	5.1	31
333	Hydrothermal synthesis, nonlinear optical property and photocatalytic activity of a non-centrosymmetric AgIO3 photocatalyst under UV and visible light irradiation. <i>Solid State Sciences</i> , 2015 , 46, 37-42	3.4	31
332	Experimental and theoretical studies of second harmonic generation for Bi2O2[NO3(OH)]. <i>Materials Research Bulletin</i> , 2012 , 47, 2573-2578	5.1	31
331	An Exceptional Peroxide Birefringent Material Resulting from d-Interactions. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9414-9417	16.4	30
330	CsSiB3O7: A Beryllium-Free Deep-Ultraviolet Nonlinear Optical Material Discovered by the Combination of Electron Diffraction and First-Principles Calculations. <i>Chemistry of Materials</i> , 2018 , 30, 2203-2207	9.6	30
329	Nonbonding Electrons Driven Strong SHG Effect in HgGeSe: Experimental and Theoretical Investigations. <i>Inorganic Chemistry</i> , 2018 , 57, 6795-6798	5.1	30
328	Rational design of a new chalcogenide with good infrared nonlinear optical performance: SrZnSnS4. Journal of Materials Chemistry C, 2019 , 7, 8556-8561	7.1	30
327	A New KBBF-Family Nonlinear Optical Material with Strong Interlayer Bonding. <i>Crystal Growth and Design</i> , 2017 , 17, 4422-4427	3.5	30
326	Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets. <i>Nature Communications</i> , 2016 , 7, 12214	17.4	30
325	Breaking through the "3.0 eV wall" of energy band gap in mid-infrared nonlinear optical rare earth chalcogenides by charge-transfer engineering. <i>Materials Horizons</i> , 2021 , 8, 2330-2334	14.4	30

324	Be2BO3F: A Phase of Beryllium Fluoride Borate Derived from KBe2BO3F2 with Short UV Absorption Edge. <i>Inorganic Chemistry</i> , 2016 , 55, 6586-91	5.1	29
323	Mechanism for linear and nonlinear optical effects in crystals of the Sr2Be2B2O7 family. <i>Journal of Applied Physics</i> , 2003 , 93, 9717-9723	2.5	29
322	UV Solar-Blind-Region Phase-Matchable Optical Nonlinearity and Anisotropy in a EConjugated Cation-Containing Phosphate. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 14806-14810	16.4	29
321	The second-harmonic generation intensification derived from localization conjugated Ebrbitals in O. <i>Chemical Communications</i> , 2018 , 54, 1445-1448	5.8	28
320	Crystal Growth, Structure, and Optical Properties of LiGaGe2Se6. <i>Inorganic Chemistry</i> , 2016 , 55, 8672-80) 5.1	28
319	ABi2(IO3)2F5 (A=K, Rb, and Cs): A Combination of Halide and Oxide Anionic Units To Create a Large Second-Harmonic Generation Response with a Wide Bandgap. <i>Angewandte Chemie</i> , 2017 , 129, 9620-962	2 ^{3.6}	28
318	Realizing Tunable White Light Emission in Lead-Free Indium(III) Bromine Hybrid Single Crystals through Antimony(III) Cation Doping. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 10164-10172	6.4	28
317	Realizing Deep-Ultraviolet Second Harmonic Generation by First-Principles-Guided Materials Exploration in Hydroxyborates. <i>Journal of the American Chemical Society</i> , 2020 , 142, 15157-15163	16.4	28
316	A rich structural chemistry in ⊞onjugated hydroisocyanurates: layered structures of AB(HCNO)∏hHO (A = K, Rb, Cs; B = Mg, Ca; n = 4, 10) with high ultraviolet transparency and strong optical anisotropy. <i>Dalton Transactions</i> , 2019 , 48, 9048-9052	4.3	27
315	AHgSnQ (A = Sr, Ba; Q = S, Se): A Series of Hg-Based Infrared Nonlinear-Optical Materials with Strong Second-Harmonic-Generation Response and Good Phase Matchability. <i>Inorganic Chemistry</i> , 2019 , 58, 10390-10398	5.1	27
314	LaBeB3O7: a new phase-matchable nonlinear optical crystal exclusively containing the tetrahedral XO4 (X = B and Be) anionic groups. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 3616	7.1	27
313	Hydrothermal growths, optical features and first-principles calculations of sillenite-type crystals comprising discrete MO4 tetrahedra. <i>CrystEngComm</i> , 2012 , 14, 1063-1068	3.3	27
312	Ag3Ga3SiSe8: a new infrared nonlinear optical material with a chalcopyrite structure. CrystEngComm, 2014 , 16, 6836	3.3	26
311	Phase transition, optical and dielectric properties regulated by anion-substitution in a homologous series of 2D hybrid organic[horganic perovskites. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 11964-11971	7.1	25
310	Negative thermal expansion and electronic structure variation of chalcopyrite type LiGaTe <i>RSC Advances</i> , 2018 , 8, 9946-9955	3.7	25
309	Facile Growth of an Ultraviolet Hydroisocyanurate Crystal with Strong Nonlinearity and a Wide Phase-Matching Region from Econjugated (HCNO) Groups. <i>Inorganic Chemistry</i> , 2019 , 58, 11289-11293	5.1	25
308	Visible-Light-Responsive Chalcogenide Photocatalyst BaZnSe: Crystal and Electronic Structure, Thermal, Optical, and Photocatalytic Activity. <i>Inorganic Chemistry</i> , 2016 , 55, 12783-12790	5.1	25
307	Rational structural design of benzothiazolium-based crystal HDB-T with high nonlinearity and efficient terahertz-wave generation. <i>Chemical Communications</i> , 2019 , 55, 7950-7953	5.8	24

306	Negative linear compressibility in a crystal of BiB3O6. <i>Scientific Reports</i> , 2015 , 5, 13432	4.9	24
305	Significantly Enhanced Infrared Emissivity of LaAlO3 by Co-Doping with Ca2+ and Cr3+ for Energy-Saving Applications. <i>Journal of the American Ceramic Society</i> , 2015 , 98, 2336-2339	3.8	24
304	Energy band gap engineering in borate ultraviolet nonlinear optical crystals: ablinitio studies. Journal of Physics Condensed Matter, 2012 , 24, 145503	1.8	24
303	Rare earth induced formation of BiB3O6 at ambient pressure with strong second harmonic generation. <i>Journal of Materials Chemistry</i> , 2012 , 22, 17934		24
302	Syntheses and characterization of two new selenides Ba5Al2Se8 and Ba5Ga2Se8. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 2981-2985	5.7	24
301	LiZn(OH)CO : A Deep-Ultraviolet Nonlinear Optical Hydroxycarbonate Designed from a Diamond-like Structure. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 13574-13578	16.4	24
300	Two rare-earth-based quaternary chalcogenides EuCdGeQ (Q = S, Se) with strong second-harmonic generation. <i>Dalton Transactions</i> , 2019 , 48, 17620-17625	4.3	24
299	AGa3F6(SeO3)2 (A = Rb, Cs): A New Type of Phase-Matchable Hexagonal Tungsten Oxide Material with Strong Second-Harmonic Generation Responses. <i>Chemistry of Materials</i> , 2020 , 32, 6906-6915	9.6	23
298	Prediction of the helix/strand content of globular proteins based on their primary sequences. <i>Protein Engineering, Design and Selection</i> , 1998 , 11, 971-9	1.9	23
297	Giant Optical Anisotropy in the UV-Transparent 2D Nonlinear Optical Material Sc(IO3)2(NO3). <i>Angewandte Chemie</i> , 2021 , 133, 3506-3510	3.6	23
296	LiO4 tetrahedra lock the alignment of Etonjugated layers to maximize optical anisotropy in metal hydroisocyanurates. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 2850-2854	6.8	22
295	An Unprecedented Antimony(III) Borate with Strong Linear and Nonlinear Optical Responses. <i>Angewandte Chemie</i> , 2020 , 132, 7867-7870	3.6	22
294	Deep-Ultraviolet Nonlinear Optical Crystal Cs Al (B O) O: A Benign Member of the Sr Be (BO) O Family with [Al (B O) O] Double Layers. <i>Chemistry - A European Journal</i> , 2018 , 24, 7856-7860	4.8	22
293	KZnGeS: A Congruent-Melting Infrared Nonlinear-Optical Material with a Large Band Gap. <i>Inorganic Chemistry</i> , 2018 , 57, 9446-9452	5.1	22
292	BaM(CNO) (M = Sr, Pb): Band Engineering from p-Interaction via Homovalent Substitution in Metal Cyanurates Containing Planar Econjugated Groups. <i>Inorganic Chemistry</i> , 2019 , 58, 9553-9556	5.1	22
291	Development of nonlinear optical materials promoted by density functional theory simulations. <i>International Journal of Modern Physics B</i> , 2014 , 28, 1430018	1.1	22
2 90	Electronic structure of LiGaS2. Solid State Communications, 2009, 149, 572-575	1.6	22
289	Ab initio calculations on the borate nonlinear optical crystal BaAlBO3F2. <i>Journal of Applied Physics</i> , 2009 , 106, 103107	2.5	22

(2016-2020)

288	CsZn2BO3X2 (X2=F2, Cl2, and FCl): A Series of Beryllium-Free Deep-Ultraviolet Nonlinear-Optical Crystals with Excellent Properties. <i>Angewandte Chemie</i> , 2020 , 132, 19168-19172	3.6	22
287	Giant Second-Harmonic Generation Response and Large Band Gap in the Partially Fluorinated Mid-Infrared Oxide RbTeMoOF. <i>Journal of the American Chemical Society</i> , 2021 , 143, 12455-12459	16.4	22
286	The electronic structure of RbTiOPO4 and the effects of the A-site cation substitution in KTiOPO4-family crystals. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 405503	1.8	21
285	Electronic structure and vibrational properties of KRbAl2B2O7. <i>Materials Research Bulletin</i> , 2013 , 48, 929-934	5.1	21
284	Experimental and modelling techniques for assessing the adhesion of very thin coatings on glass. <i>Journal Physics D: Applied Physics</i> , 2009 , 42, 214003	3	21
283	KBiMS4 (M=Si, Ge): Synthesis, structure, and electronic structure. <i>Journal of Solid State Chemistry</i> , 2010 , 183, 1640-1644	3.3	21
282	Refractive Index Modulates Second-Harmonic Responses in RE8O(CO3)3(OH)15X (RE = Y, Lu; X = Cl, Br): Rare-Earth Halide Carbonates as Ultraviolet Nonlinear Optical Materials. <i>Chemistry of Materials</i> , 2019 , 31, 2130-2137	9.6	20
281	Deep-ultraviolet nonlinear optical crystals by design: A computer-aided modeling blueprint from first principles. <i>Science China Materials</i> , 2020 , 63, 1597-1612	7.1	20
280	Influence of A-site cations on germanium iodates as mid-IR nonlinear optical materials: A2Ge(IO3)6 (A = Li, K, Rb and Cs) and BaGe(IO3)6[H2O. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 4698-4705	7.1	20
279	Optical properties of impact diamonds from the Popigai astrobleme. <i>Diamond and Related Materials</i> , 2013 , 37, 8-16	3.5	20
278	K2FeGe3Se8: a new antiferromagnetic iron selenide. <i>Inorganic Chemistry</i> , 2013 , 52, 2022-8	5.1	20
277	Synthesis, structure, physical properties, and electronic structure of KGaSe2. <i>Solid State Sciences</i> , 2012 , 14, 1152-1156	3.4	20
276	Optical transitions due to native defects in nonlinear optical crystals LiGaS2. <i>Journal of Applied Physics</i> , 2012 , 111, 113507	2.5	20
275	Negative thermal expansion in one-dimension of a new double sulfate AgHo(SO4)2 with isolated SO4 tetrahedra. <i>Journal of Materials Science and Technology</i> , 2021 , 76, 111-121	9.1	20
274	Parallel Alignment of Econjugated Anions in Hydroisocyanurates Enhancing Optical Anisotropy. <i>Inorganic Chemistry</i> , 2019 , 58, 8948-8952	5.1	19
273	Beryllium-Free Nonlinear-Optical Crystals ABaLiGaBOF (A = K and Rb): Members of the SrBe(BO)O Family with a Strong Covalent Connection between the [LiGaBOF] Double Layers. <i>Inorganic Chemistry</i> , 2018 , 57, 5669-5676	5.1	19
272	Pb(SeO)Br: a new nonlinear optical material with enhanced SHG response designed via an ion-substitution strategy. <i>Dalton Transactions</i> , 2018 , 47, 1911-1917	4.3	19
271	High pressure behaviour and elastic properties of a dense inorganic-organic framework. <i>Dalton Transactions</i> , 2016 , 45, 4303-8	4.3	19

270	A promising new nonlinear optical crystal with high laser damage threshold for application in the IR region: synthesis, crystal structure and properties of noncentrosymmetric CsHgBr3. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 6796-6801	7.1	19
269	Ln3FeGaQ7: A new series of transition-metal rare-earth chalcogenides. <i>Journal of Solid State Chemistry</i> , 2013 , 202, 269-275	3.3	19
268	Hg2Br3I: a new mixed halide nonlinear optical material in the infrared region. <i>CrystEngComm</i> , 2013 , 15, 4196	3.3	19
267	Sr3BeB6O13: a new borate in the SrO/BeO/B2O3 system with novel tri-six-membered ring (BeB6O15)10- building block. <i>Inorganic Chemistry</i> , 2013 , 52, 6136-41	5.1	19
266	Ab initio study of the hygroscopic properties of borate crystals. <i>Physical Review B</i> , 2004 , 70,	3.3	19
265	Mn-Based tin sulfide Sr3MnSn2S8 with a wide band gap and strong nonlinear optical response. Journal of Materials Chemistry C, 2019 , 7, 1146-1150	7.1	18
264	Discoloration Effect and One-Step Synthesis of Hydrogen Tungsten and Molybdenum Bronze (H MO) using Liquid Metal at Room Temperature. <i>ACS Omega</i> , 2019 , 4, 7428-7435	3.9	18
263	Strong Second Harmonic Generation in a Tungsten Bronze Oxide by Enhancing Local Structural Distortion. <i>Journal of the American Chemical Society</i> , 2020 , 142, 7480-7486	16.4	18
262	Nonlayered CdSe Flakes Homojunctions. <i>Advanced Functional Materials</i> , 2020 , 30, 1908902	15.6	18
261	Na3Y3(BO3)4: a new noncentrosymmetric borate with an open-framework structure. <i>Dalton Transactions</i> , 2016 , 45, 7205-8	4.3	18
260	Nonlinear Optical Oxythiophosphate Approaching the Good Balance with Wide Ultraviolet Transparency, Strong Second Harmonic Effect, and Large Birefringence. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 6386-6390	16.4	18
259	K2MnGe3S8: a new multifunctional semiconductor featuring [MnGe3S8]2llayers and demonstrating interesting nonlinear optical response and antiferromagnetic properties. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 10042-10049	7.1	18
258	Syntheses, structures, optical properties, and electronic structures of KBaMSe3 (M = As, Sb). Journal of Alloys and Compounds, 2014 , 617, 287-291	5.7	17
257	Robust Hydrogenation of Nitrile and Nitro Groups to Primary Amines Using Ni2P as a Catalyst and Ammonia Borane under Ambient Conditions. <i>Asian Journal of Organic Chemistry</i> , 2017 , 6, 1589-1593	3	17
256	Ba(MoOF)(XO) (X = Se and Te): First Cases of Noncentrosymmetric Fluorinated Molybdenum Oxide Selenite/Tellurite Through Unary Substitution for Enlarging Band Gaps and Second Harmonic Generation. ACS Applied Materials & amp; Interfaces, 2020, 12, 49812-49821	9.5	17
255	A Langbeinite-Type Yttrium Phosphate LiCsY(PO). <i>Inorganic Chemistry</i> , 2018 , 57, 13087-13091	5.1	17
254	K ZnSn Se: A Non-Centrosymmetric Zinc Selenidostannate(IV) Featuring Interesting Covalently Bonded [ZnSn Se] Layer and Exhibiting Intriguing Second Harmonic Generation Activity. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 1282-1285	4.5	16
253	Intrinsic zero thermal expansion in cube cyanurate K6Cd3(C3N3O3)4. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 2291-2295	6.8	16

252	Wide band gap design of new chalcogenide compounds: KSrPS4 and CsBaAsS4. <i>RSC Advances</i> , 2017 , 7, 38044-38051	3.7	16	
251	Syntheses, structures, and optical properties of Ba4Ga4SnSe12 and Ba6Ga2SnSe11. <i>Dalton Transactions</i> , 2015 , 44, 2259-66	4.3	16	
250	NaGe3P3: a new ternary germanium phosphide featuring an unusual [Ge3P7] ring. <i>Dalton Transactions</i> , 2012 , 41, 484-9	4.3	16	
249	Y2(CO3)3IH2O and (NH4)2Ca2Y4(CO3)9IH2O: Partial Aliovalent Cation Substitution Enabling Evolution from Centrosymmetry to Noncentrosymmetry for Nonlinear Optical Response. <i>Chemistry of Materials</i> , 2019 , 31, 52-56	9.6	16	
248	Enhanced visible-light-driven photocatalytic activity in yellow and black orthorhombic NaTaO3 nanocubes by surface modification and simultaneous N/Ta(4+) co-doping. <i>Journal of Colloid and Interface Science</i> , 2016 , 461, 185-194	9.3	15	
247	LiSr3Be3B3O9F4: a new ultraviolet nonlinear optical crystal for fourth-harmonic generation of Nd:YAG lasers. <i>New Journal of Chemistry</i> , 2017 , 41, 4269-4272	3.6	15	
246	Negative area compressibility of a hydrogen-bonded two-dimensional material. <i>Chemical Science</i> , 2019 , 10, 1309-1315	9.4	15	
245	Poly(difluorophosphazene) as the First Deep-Ultraviolet Nonlinear Optical Polymer: A First-Principles Prediction. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 10250-10254	16.4	15	
244	Isoxazolone-based single crystals with large second harmonic generation effect. <i>CrystEngComm</i> , 2015 , 17, 7316-7322	3.3	15	
243	Synthesis of NiGa2O4 Octahedron Nanocrystal with Exposed {111} Facets and Enhanced Efficiency of Photocatalytic Water Splitting. <i>ChemPlusChem</i> , 2015 , 80, 223-230	2.8	15	
242	A novel Bi-based phosphomolybdate photocatalyst K2Bi(PO4)(MoO4): Crystal structure, electronic structure and photocatalytic activity. <i>Materials Research Bulletin</i> , 2014 , 51, 455-459	5.1	15	
241	KSi2P3: A new layered phosphidopolysilicate (IV). Journal of Solid State Chemistry, 2013, 205, 129-133	3.3	15	
240	Experimental and ab initio studies of Cd(BO)Cl: the first cadmium borate chlorine NLO material with isolated BO groups. <i>Dalton Transactions</i> , 2017 , 46, 15228-15234	4.3	15	
239	Optical properties of LiGaSe2 noncentrosymmetric crystal. <i>Optical Materials</i> , 2017 , 72, 795-804	3.3	15	
238	EuHgGeSe and EuHgSnS: Two Quaternary Eu-Based Infrared Nonlinear Optical Materials with Strong Second-Harmonic-Generation Responses. <i>Inorganic Chemistry</i> , 2020 , 59, 18452-18460	5.1	15	
237	A comprehensive survey on nonlinear optical phosphates: Role of multicoordinate groups. <i>Coordination Chemistry Reviews</i> , 2021 , 431, 213692	23.2	15	
236	Molecular design on isoxazolone-based derivatives with large second-order harmonic generation effect and terahertz wave generation. <i>CrystEngComm</i> , 2016 , 18, 3667-3673	3.3	15	
235	Interfacial wetting behaviors of liquid Ga alloys/FeGa3 based on metallic bond interaction. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2019 , 569, 102-109	5.1	15	

234	CsNaVCl: A Pb-Free Halide Double Perovskite with Strong Visible and Near-Infrared Light Absorption. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 38648-38653	9.5	14
233	NaBOF: a new sodium-rich fluorooxoborate with a unique [BOF] ring and a short ultraviolet absorption edge. <i>Dalton Transactions</i> , 2018 , 48, 21-24	4.3	14
232	Layered oxide B2S2O9 with a deep-ultraviolet band gap and a strong and robust second-harmonic generation. <i>Physical Review B</i> , 2020 , 102,	3.3	14
231	Flower-like cobalt carbide for efficient carbon dioxide conversion. <i>Chemical Communications</i> , 2020 , 56, 7849-7852	5.8	14
230	Hydroisocyanurates X2Y(H2C3N3O3)4 \square 4H2O (X = K, Cs; Y = Zn, Cd) with large birefringence stemming from \square 5conjugated (H2C3N3O3) \square 6nions. <i>CrystEngComm</i> , 2020 , 22, 2128-2131	3.3	14
229	Crystal Growth and Optical Properties of Beryllium-Free Nonlinear Optical Crystal K3Ba3Li2Al4B6O20F. <i>Crystal Growth and Design</i> , 2018 , 18, 1168-1172	3.5	14
228	RbZnSnS: A Chalcogenide with Large Laser Damage Threshold Improved from the Mn-Based Analogue. <i>Inorganic Chemistry</i> , 2019 , 58, 15029-15033	5.1	14
227	Optical properties of LiGaS(2): an ab initio study and spectroscopic ellipsometry measurement. Journal of Physics Condensed Matter, 2009 , 21, 455502	1.8	14
226	Tunable White Light Emission in a Zero-Dimensional OrganicIhorganic Metal Halide Hybrid with Ultra-High Color Rendering Index. <i>Advanced Optical Materials</i> , 2021 , 9, 2002246	8.1	14
225	Nonlinear Optical Crystal Rb4Sn3Cl2Br8: Synthesis, Structure, and Characterization. <i>Crystal Growth and Design</i> , 2018 , 18, 380-385	3.5	14
224	BaAuS: A Au-Based Intrinsic Photocatalyst for High-Performance Visible-Light Photocatalysis. <i>Inorganic Chemistry</i> , 2017 , 56, 5173-5181	5.1	13
223	Linear and nonlinear optical properties of Na3La2(BO3)3 crystal. <i>Optics and Laser Technology</i> , 2013 , 54, 407-412	4.2	13
222	A new phase-matchable nonlinear optical silicate: Rb2ZnSi3O8. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 11025-11029	7.1	13
221	Growth, structure, optical and thermal properties of three new organicIhorganic hybrid crystals: (C2H7N4S)3BiCl6IH2O, (C2H7N4S)2BiBr5, and (C2H5N4S)2BiI5. <i>Polyhedron</i> , 2017 , 127, 478-488	2.7	13
220	A first principles study of the properties of Al:ZnO and its adhesion to Ag in an optical coating. Journal of Applied Physics, 2009 , 106, 013520	2.5	13
219	"Old dog, new tricks": the lone pair effect inducing divergent optical responses in lead cyanurates containing Ebonds. <i>Dalton Transactions</i> , 2020 , 49, 1370-1374	4.3	13
218	Two Mixed-Anion Units of [GeOSe] and [GeOS] Originating from Partial Isovalent Anion Substitution and Inducing Moderate Second Harmonic Generation Response and Large Birefringence. <i>Inorganic Chemistry</i> , 2020 , 59, 16716-16724	5.1	13
217	A Deep-UV Nonlinear Optical Borosulfate with Incommensurate Modulations. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 11457-11463	16.4	13

216	AXHg3P2S8 (A = Rb, Cs; X = Cl, Br): New Excellent Infrared Nonlinear Optical Materials with Mixed-Anion Chalcohalide Groups of Trigonal Planar [HgS2X]3land Tetrahedral [HgS3X]5[] Advanced Optical Materials, 2021 , 9, 2100563	8.1	13
215	RbSeOCl[HO: a polar material among the alkali metal selenite halides with a strong SHG response. <i>Dalton Transactions</i> , 2016 , 45, 17723-17728	4.3	13
214	From CuFeS to BaCuFeGeS: rational band gap engineering achieves large second-harmonic-generation together with high laser damage threshold. <i>Chemical Communications</i> , 2019 , 55, 14510-14513	5.8	13
213	Zero Linear Compressibility in Nondense Borates with a "Lu-Ban Stool"-Like Structure. <i>Advanced Materials</i> , 2018 , 30, e1801313	24	13
212	Controllable negative thermal expansion, ferroelectric and semiconducting properties in PbTiO3Bi(Co2/3Nb1/3)O3 solid solutions. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 931-936	7.1	12
211	KNaBPO: A Deep-Ultraviolet Transparent Borophosphate Exhibiting Second-Harmonic Generation Response. <i>Inorganic Chemistry</i> , 2019 , 58, 8918-8921	5.1	12
210	Synthesis, crystal growth, and second-order nonlinear optical properties of new configurationally locked polyene derivatives. <i>CrystEngComm</i> , 2015 , 17, 1050-1055	3.3	12
209	Ab Initio Study of Water Adsorption and Reactivity on the (211) Surface of Anatase TiO2. <i>Physical Review Applied</i> , 2016 , 5,	4.3	12
208	Effect of C-5 position on the photochemical properties and phototoxicity of antofloxacin and levofloxacin: A stable and transient study. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2016 , 155, 122-9	6.7	12
207	Ca3Na4LiBe4B10O24F: a new beryllium borate with a unique beryl borate (P)[Be8B16O40F2] layer intrabridged by [B12O24] groups. <i>Inorganic Chemistry</i> , 2014 , 53, 8197-9	5.1	12
206	A novel approach to distinguish between intron-containing and intronless genes based on the format of Z curves. <i>Journal of Theoretical Biology</i> , 1998 , 192, 467-73	2.3	12
205	A density functional study of the effect of hydrogen on the strength of an epitaxial Ag/ZnO interface. <i>Journal of Applied Physics</i> , 2007 , 102, 103513	2.5	12
204	UV Solar-Blind-Region Phase-Matchable Optical Nonlinearity and Anisotropy in a Econjugated Cation-Containing Phosphate. <i>Angewandte Chemie</i> , 2021 , 133, 14932-14936	3.6	12
203	NaCa(TeO)(PO): a new noncentrosymmetric tellurite phosphate with fascinating multimember-ring architectures and intriguing nonlinear optical performance. <i>Dalton Transactions</i> , 2018 , 47, 17198-17201	4.3	12
202	Two Novel Deep-Ultraviolet Nonlinear Optical Crystals with Shorter Phase-Matching Second Harmonic Generation than KBe2BO3F2: A First-Principles Prediction. <i>Physica Status Solidi - Rapid Research Letters</i> , 2018 , 12, 1800276	2.5	12
201	A new cerium iodate infrared nonlinear optical material with a large second-harmonic generation response. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 2130-2134	7.1	11
200	Zero Thermal Expansion and Semiconducting Properties in PbTiO-Bi(Co, Ti)O Ferroelectric Solid Solutions. <i>Inorganic Chemistry</i> , 2017 , 56, 2589-2595	5.1	11
199	Li4HgSn2Se7: The First Second-Order Nonlinear Optical-Active Selenide in the I4ŪŪV2ŪI7 Diamond-like Family. <i>Crystal Growth and Design</i> , 2019 , 19, 5494-5497	3.5	11

198	Deep-ultraviolet nonlinear optical crystal NaBe2BO3F2Btructure, growth and optical properties. Journal of Crystal Growth, 2019 , 518, 45-50	1.6	11
197	Crystal growth, structural characteristics and electronic structure of Ba1-xPbxFe12O19 (x □ 0.23 \overline{\textbf{0}}.80) hexaferrites. <i>Journal of Alloys and Compounds</i> , 2020 , 844, 156036	5.7	11
196	Mixed-metal thiophosphate CuCd3PS6: an infrared nonlinear optical material activated by its three-in-one tetrahedra-stacking architecture. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 5020-5024	7.1	11
195	Na2MnGe2Se6: a new Mn-based antiferromagnetic chalcogenide with large Mn?Mn separation. Journal of Materials Chemistry C, 2016 , 4, 10812-10819	7.1	11
194	RbSrY(BO): A Rare-Earth Pentaborate with Moderate Second-Harmonic Response and Interesting Phase-Matching Behavior. <i>Inorganic Chemistry</i> , 2019 , 58, 8943-8947	5.1	11
193	Eliminating ultraviolet optical absorption through Fe-impurity engineering: Ab initio study of the nonlinear optical crystal K2Al2B2O7. <i>Physical Review B</i> , 2010 , 82,	3.3	11
192	Mechanism for linear and nonlinear optical effects in SrBe3O4 crystal. <i>Journal of Chemical Physics</i> , 2002 , 117, 2809-2813	3.9	11
191	An unprecedented planar Etonjugated [BP] group with ultra-large birefringence and nonlinearity: an ab initio study. <i>Chemical Communications</i> , 2020 , 56, 643-646	5.8	11
190	Highly Distorted [HgS] Motif-Driven Structural Symmetry Degradation and Strengthened Second-Harmonic Generation Response in the Defect Diamond-Like Chalcogenide HgPS. <i>ACS Applied Materials & Defect Diamond Defect Defect Diamond Defect Defect Diamond Defect Defect Defect Diamond Defect Def</i>	9.5	11
189	High thermoelectric performance of In-doped Cu2SnSe3 prepared by fast combustion synthesis. <i>New Journal of Chemistry</i> , 2016 , 40, 5394-5400	3.6	11
188	Giant isotropic magnetostriction in NaZn13-type LaFe13⊠Alx compounds. <i>Applied Physics Letters</i> , 2017 , 110, 011906	3.4	10
187	Ba1.31Sr3.69(BO3)3Cl: A new structure type in the M5(BO3)3Cl (M = bivalent cation) system. <i>Journal of Alloys and Compounds</i> , 2017 , 699, 136-143	5.7	10
186	Structural Evolution in BaSnFX (X = Cl, Br, I): A Family of Alkaline Earth Metal Tin Mixed Halides. <i>Inorganic Chemistry</i> , 2017 , 56, 13593-13599	5.1	10
185	"Two in one": an unprecedented mixed anion, Ba(CNO)(CNO), with the coexistence of isolated sp and spEconjugated groups. <i>Dalton Transactions</i> , 2019 , 48, 14246-14250	4.3	10
184	Sr6Cd2Sb6O7S10: Strong SHG Response Activated by Highly Polarizable Sb/O/S Groups. <i>Angewandte Chemie</i> , 2019 , 131, 8162-8165	3.6	10
183	The structure and band gap design of high Si doping level Ag1\(\mathbb{Q}\)Ga1\(\mathbb{Q}\)SixSe2 (x=1/2). <i>Journal of Solid State Chemistry</i> , 2016 , 238, 21-24	3.3	10
182	Growth and properties of bulk Na-doped KABO crystals. Solid State Sciences, 2011, 13, 1172-1175	3.4	10
181	Mechanism of the linear and nonlinear optical effects of and crystals. <i>Solid State Communications</i> , 2010 , 150, 2318-2321	1.6	10

(2021-2020)

180	Mechanochemical Synthesis of an Ionic Cocrystal with Large Birefringence Resulting from Neutral Planar EConjugated Groups. <i>Crystal Growth and Design</i> , 2020 , 20, 7588-7592	3.5	10
179	Optimal arrangement of Econjugated anionic groups in hydro-isocyanurates leads to large optical anisotropy and second-harmonic generation effect. <i>Inorganic Chemistry Frontiers</i> , 2020 , 7, 3674-3686	6.8	10
178	Nonpolar Na 10 Cd(NO 3) 4 (SO 3 S) 4 Exhibits a Large Second-Harmonic Generation. CCS Chemistry,694	1- <u>6.9</u> 9	10
177	A New Nonlinear Optical Selenide Crystal AgLiGa2Se4 with Good Comprehensive Performance in Mid-Infrared Region. <i>Advanced Optical Materials</i> , 2021 , 9, 2001856	8.1	10
176	AgBi(SO)(IO): aliovalent substitution induces structure dimensional upgrade and second harmonic generation enhancement. <i>Chemical Communications</i> , 2021 , 57, 3712-3715	5.8	10
175	Crystal growth and electronic structure of low-temperature phase SrMgF4. <i>Journal of Solid State Chemistry</i> , 2016 , 236, 89-93	3.3	9
174	KCeIO: a novel potassium cerium(iv) iodate with enhanced visible light driven photocatalytic activity resulting from polar zero dimensional [Ce(IO)] units. <i>Dalton Transactions</i> , 2017 , 46, 4170-4173	4.3	9
173	An Exceptional Peroxide Birefringent Material Resulting from dlInteractions. <i>Angewandte Chemie</i> , 2020 , 132, 9500-9503	3.6	9
172	Synthesis, Crystal Structure, and Optical Properties of the First Alkali Metal Rare-Earth Iodate Fluoride: Li2Ce(IO3)4F2. <i>Crystal Growth and Design</i> , 2020 , 20, 2135-2140	3.5	9
171	Syntheses, crystal structures and physical properties of three new chalcogenides: NaGaGe3Se8, K3Ga3Ge7S20, and K3Ga3Ge7Se20. <i>Dalton Transactions</i> , 2016 , 45, 532-8	4.3	9
170	Mechanical properties and negative thermal expansion of a dense rare earth formate framework. Journal of Solid State Chemistry, 2016 , 233, 289-293	3.3	9
169	PbFCl: a promising infrared nonlinear optical material with high laser damage threshold. <i>Dalton Transactions</i> , 2019 , 48, 13529-13535	4.3	9
168	Optical and magnetic properties of Ba5(BO3)3F single crystals. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 24884-91	3.6	9
167	SrBeB2O5: Growth, crystal structure and optical properties. <i>Journal of Alloys and Compounds</i> , 2014 , 593, 256-260	5.7	9
166	Study on optical weak absorption of borate crystals. <i>Optical Materials</i> , 2013 , 35, 2376-2381	3.3	9
165	The prospect of berylliumBxygen group to search for new nonlinear optical crystals. <i>Chemical Physics Letters</i> , 2004 , 399, 125-129	2.5	9
164	Czochralski crystal growth and properties of Na5[B2P3O13]. Journal of Crystal Growth, 2003, 255, 119-1	22 6	9
163	EBaGa4Se7: a promising IR nonlinear optical crystal designed by predictable structural rearrangement. <i>Journal of Materials Chemistry C</i> , 2021 , 10, 96-101	7.1	9

162	From AgGaS2 to AgHgPS4: vacancy defects and highly distorted HgS4 tetrahedra double-induced remarkable second-harmonic generation response. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 1062-1068	37.1	9
161	BaCa(BO)F: Etonjugation of BO in the planar pentagonal layer achieving large second harmonic generation of -borate. <i>Chemical Science</i> , 2021 , 12, 13897-13901	9.4	9
160	Role of Metal-Chloride Anions in Photoluminescence Regulations for Hybrid Metal Halides. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 1918-1925	6.4	9
159	Cyano-Based Materials with Giant Optical Anisotropy and Second Harmonic-Generation Effect. <i>Inorganic Chemistry</i> , 2018 , 57, 15001-15008	5.1	9
158	Cooperation of Three Chromophores Generates the Water-Resistant Nitrate Nonlinear Optical Material Bi3TeO6OH(NO3)2. <i>Angewandte Chemie</i> , 2017 , 129, 555-559	3.6	8
157	BeO Trigonal Prism with Ultralong Be-O Bonds Observed in a Deep Ultraviolet Optical Crystal LiBeBeBO. <i>Inorganic Chemistry</i> , 2019 , 58, 2201-2207	5.1	8
156	Synthesis, Structure, and Characterization of Two Mixed-Cation Quaternary Chalcogenides KBaSnQ (Q = S, Se). <i>Inorganic Chemistry</i> , 2019 , 58, 7118-7125	5.1	8
155	LiGaPO: A Potential UV Nonlinear-Optical Crystal. <i>Inorganic Chemistry</i> , 2019 , 58, 6597-6600	5.1	8
154	K3LaTe2O9: a new alkali-rare earth tellurate with face-sharing TeO6 octahedra. <i>Dalton Transactions</i> , 2015 , 44, 15576-82	4.3	8
153	Sn2SiS4, synthesis, structure, optical and electronic properties. <i>Optical Materials</i> , 2015 , 47, 379-385	3.3	8
152	Broad Negative Thermal Expansion Operation-Temperature Window Achieved by Adjusting Fe-Fe Magnetic Exchange Coupling in La(Fe,Si)13 Compounds. <i>Inorganic Chemistry</i> , 2015 , 54, 7868-72	5.1	8
151	Structures and optical properties of two phases of SrMgF4. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 500-8	3.6	8
150	Functional Chalcogenide NaHgSnSe and KMnGeSe Exhibiting Flexible Chain Structure and Intriguing Birefringence Tunability. <i>Inorganic Chemistry</i> , 2020 , 59, 7614-7621	5.1	8
149	Helix-constructed polar rare-earth iodate fluoride as a laser nonlinear optical multifunctional material. <i>Chemical Science</i> , 2020 , 11, 7396-7400	9.4	8
148	Synthesis and structure of a new mixed metal iodate Ba3Ga2(IO3)12. CrystEngComm, 2019, 21, 4981-49	863	8
147	Ca3Be6B5O16F: the first alkaline-earth beryllium borate with fluorine anions. <i>Dalton Transactions</i> , 2014 , 43, 9998-10004	4.3	8
146	Influences of twist boundaries on optical effects: Ab initio studies of the deep ultraviolet nonlinear optical crystal KBe2BO3F2. <i>Journal of Applied Physics</i> , 2011 , 109, 073721	2.5	8
145	A theoretical model to calculate linear electro-optic effect in crystals. <i>Chemical Physics Letters</i> , 2004 , 397, 222-226	2.5	8

144	Strong SHG Responses in a Beryllium-Free Deep-UV-Transparent Hydroxyborate via Covalent Bond Modification. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	8
143	Nonlinear-Optical Crystal RbYBO with Condensed BO Blocks That Exhibits an Intriguing Structural Arrangement and a Short Ultraviolet Absorption Edge. <i>Inorganic Chemistry</i> , 2020 , 59, 13029-13033	5.1	8
142	PbTeGeO: polar rosiaite-type germanate featuring a two dimensional layered structure. <i>Dalton Transactions</i> , 2018 , 47, 16388-16392	4.3	8
141	BaM2As2S6 (Mଢ Cd, Hg): Synthesis, crystal structure, optical and electronic properties. <i>Journal of Alloys and Compounds</i> , 2018 , 762, 143-148	5.7	8
140	A Congruent-Melting Mid-Infrared Nonlinear Optical Vanadate Exhibiting Strong Second-Harmonic Generation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 22447-22453	16.4	8
139	Structure and Characterization of a Zero-Dimensional Alkali Tin Dihalides Compound CsSnFCl with the [SnFCl] Clusters. <i>Inorganic Chemistry</i> , 2017 , 56, 3081-3086	5.1	7
138	Poly(difluorophosphazene) as the First Deep-Ultraviolet Nonlinear Optical Polymer: A First-Principles Prediction. <i>Angewandte Chemie</i> , 2019 , 131, 10356-10360	3.6	7
137	M2(SeO3)F2 (M = Zn, Cd): understanding the structure directing effect of [SeO3]2lbroups on constructing ordered oxyfluorides. <i>CrystEngComm</i> , 2019 , 21, 2485-2489	3.3	7
136	SnGaGeSe, a benign addition to the AMMQ family: synthesis, crystal structure and nonlinear optical performance. <i>Dalton Transactions</i> , 2019 , 48, 6638-6644	4.3	7
135	Electronic structure, magnetic and optical properties of the Ba7(BO3)4 E 2+3 crystal. <i>Journal of Solid State Chemistry</i> , 2015 , 229, 358-365	3.3	7
134	A new non-centrosymmetric Gd-based borate crystal RbSrGd(BO): growth, structure, and nonlinear optical and magnetic properties. <i>Dalton Transactions</i> , 2020 , 49, 9355-9361	4.3	7
133	Large spontaneous polarization in polar perovskites of PbTiO3 B i(Zn1/2Ti1/2)O3. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 1277-1281	6.8	7
132	A new congruent-melting double phosphate PbCd(PO3)4 with photocatalytic activity. <i>Journal of Alloys and Compounds</i> , 2016 , 689, 599-605	5.7	7
131	Effect of cobalt doping on the structural, magnetic and abnormal thermal expansion properties of NaZn13-type La(Fe1-xCox)11.4Al1.6 compounds. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 20276-8	03.6	7
130	Pronounced Negative Thermal Expansion in Lead-Free BiCoO3-Based Ferroelectrics Triggered by the Stabilized Perovskite Structure. <i>Chemistry of Materials</i> , 2019 , 31, 6187-6192	9.6	7
129	New alkali-metal bidentate boratefhalate NaB(DL-C4H4O5)2 and CsB(DL-C4H4O5)2?H2O: Effect of cations on the framework structures and macroscopic centricities. <i>Journal of Alloys and Compounds</i> , 2014 , 582, 374-379	5.7	7
128	Noncentrosymmetric mixed-cation borate: Crystal growth, structure and optical properties of Cs2Ca[B4O5(OH)4]2[BH2O. <i>Journal of Crystal Growth</i> , 2013 , 380, 176-181	1.6	7
127	PbMnGaS and PbMnGaSe: Two Quaternary Metal Chalcognides with Open-Tunnel-Framework Structures Displaying Intense Second Harmonic Generation Responses and Interesting Magnetic Properties. <i>Inorganic Chemistry</i> , 2017 , 56, 8454-8461	5.1	7

126	Enhanced Framework Rigidity of a Zeolitic Metal-Azolate via Ligand Substitution. <i>Crystals</i> , 2017 , 7, 99	2.3	7
125	The Double Molybdate Rb2Ba(MoO4)2: Synthesis, Crystal Structure, Optical, Thermal, Vibrational Properties, and Electronic Structure. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2015 , 641, 232	27-232	5 ⁷
124	CsZrF4(IO3): The First Polar Zirconium Iodate with cis-[ZrO2F6] Polyhedra Inducing Optimized Balance of Large Band Gap and Second Harmonic Generation. <i>Chemistry of Materials</i> , 2021 , 33, 5555-55	62 .6	7
123	A2MoO2F3(IO2F2) (A = Rb, Cs): Strong Nonlinear Optical Responses and Enlarged Band Gaps through Fluorine Incorporation. <i>Chemistry of Materials</i> , 2021 , 33, 5700-5708	9.6	7
122	Regulating Guanidinium-Based Hybrid Materials for Ultraviolet Nonlinear Optical Applications by Hybrid Strength and Hybrid Pattern. <i>Inorganic Chemistry</i> , 2021 , 60, 3834-3842	5.1	7
121	An alkaline tin(II) halide compound Na 3 Sn 2 F 6 Cl: Synthesis, structure, and characterization. <i>Journal of Solid State Chemistry</i> , 2017 , 248, 104-108	3.3	6
120	Ag7TaSe6: a new noncentrosymmetric selenide with fascinating three in one to ordination modes and a strong second harmonic generation response. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 7516-751	9 ^{7.1}	6
119	Crystal structure and Raman spectrum of Ba2Pb(B3O6)2. <i>Materials Chemistry and Physics</i> , 2015 , 163, 501-506	4.4	6
118	Synthesis, crystal structures and properties of new quinolinium derivatives. <i>Chemical Physics Letters</i> , 2015 , 641, 141-145	2.5	6
117	The mechanism for the nonlinear optical properties in LaNaBOILaNaBOIand LaIaBDIab initio studies. <i>Journal of Physics Condensed Matter</i> , 2015 , 27, 485501	1.8	6
116	Anomalous mechanical materials squeezing three-dimensional volume compressibility into one dimension. <i>Nature Communications</i> , 2020 , 11, 5593	17.4	6
115	Gadolinium-Rich Borate Gd(BO)(BO)O Exhibiting a Magnetocaloric Effect. <i>Inorganic Chemistry</i> , 2020 , 59, 11071-11078	5.1	6
114	Data-driven prediction of diamond-like infrared nonlinear optical crystals with targeting performances. <i>Scientific Reports</i> , 2020 , 10, 3486	4.9	6
113	Synthesis, crystal structure and characterizations of a new diphosphate Rb2CaP2O7. <i>Journal of Alloys and Compounds</i> , 2018 , 744, 370-374	5.7	6
112	Structure and Optical Properties of the Li2In2GeSe6 Crystal. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 17413-17422	3.8	6
111	Langasite Family Midinfrared Nonlinear Optical Oxide Materials: Structure, Property, and Applications. <i>International Journal of Optics</i> , 2017 , 2017, 1-13	0.9	6
110	Mechanism of the linear electro-optic effect in potassium dihydrogen phosphate crystals. <i>Journal of Applied Physics</i> , 2008 , 104, 073116	2.5	6
109	Evaluation of nonlinear optical properties of quaternary chalcogenide halides Ba4Si3Se9Br2 and Ba4Ge3Se9Br2. <i>Journal of Alloys and Compounds</i> , 2020 , 846, 156398	5.7	6

(2021-2021)

LiZn(OH)CO3: A Deep-Ultraviolet Nonlinear Optical Hydroxycarbonate Designed from a Diamond-like Structure. <i>Angewandte Chemie</i> , 2021 , 133, 13686-13690	3.6	6	
Thermal Expansion and Second Harmonic Generation Response of the Tungsten Bronze Pb2AgNb5O15. <i>Inorganic Chemistry</i> , 2016 , 55, 2864-9	5.1	6	
The crystal growth and properties of novel magnetic double molybdate RbFe5(MoO4)7 with mixed Fe3+/Fe2+ states and 1D negative thermal expansion. <i>CrystEngComm</i> , 2021 , 23, 3297-3307	3.3	6	
Facile syntheses of silver thioantimonates exhibiting second-harmonic generation responses and large birefringence. <i>Dalton Transactions</i> , 2021 , 50, 3568-3576	4.3	6	
High mechanical strength in Zn4B6O13 with an unique sodalite-cage structure. <i>RSC Advances</i> , 2017 , 7, 2038-2043	3.7	5	
Two KBBF-Type Beryllium Borates MBeBO (M = Sr, Ba) with a Three-Dimensional (BeBO) Network. <i>Inorganic Chemistry</i> , 2017 , 56, 12090-12093	5.1	5	
Enhanced tetragonality and large negative thermal expansion in a new Pb/Bi-based perovskite ferroelectric of (1 lk)PbTiO3\(\text{B}i\)(Zn1/2V1/2)O3. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 1990-1995	6.8	5	
Nonlinear optical ASnX (A = Na, H; X = N, P) nanosheets with divalent tin lone electron pair effect by first-principles design. <i>Nanoscale</i> , 2020 , 12, 14895-14902	7.7	5	
Terahertz optical properties of nonlinear optical CdSe crystals. Optical Materials, 2018, 78, 484-489	3.3	5	
Chemical engineering of mixed halide hexaborates as nonlinear optical materials. <i>RSC Advances</i> , 2016 , 6, 107810-107815	3.7	5	
Ba3FeS4Br: A 0D Iron-Based Chalcohalide with Unusual Magnetic Properties. <i>European Journal of Inorganic Chemistry</i> , 2016 , 2016, 1359-1363	2.3	5	
Synthesis, structure, and electronic structure of CsAgGa2Se4. <i>Journal of Solid State Chemistry</i> , 2012 , 186, 54-57	3.3	5	
Structural Design of Two Fluorine-Beryllium Borates BaMBe(BO)F (M = Mg, Ca) Containing Flexible Two-Dimensional [BeBOF] Single Layers without Structural Instability Problems. <i>Inorganic Chemistry</i> , 2017 , 56, 11451-11454	5.1	5	
Structural Diversity and Giant Birefringence in Cyanates BaCNOX (X = Cl, Br, I, and CNO) Containing Linear Econjugated Units: A Combined Experimental and Theoretical Study. <i>Crystal Growth and Design</i> , 2020 , 20, 1242-1247	3.5	5	
Surface Nonlinear Optics on Centrosymmetric Dirac Nodal-Line Semimetal ZrSiS. <i>Advanced Materials</i> , 2020 , 32, e1904498	24	5	
La2SrB10O19: A Promising Ultraviolet Nonlinear Optical Crystal with an Enhanced Nonlinear Optical Effect and Shortened Cutoff Edge. <i>Crystal Growth and Design</i> , 2020 , 20, 5626-5632	3.5	5	
Intrinsic Isotropic Near-Zero Thermal Expansion in ZnBOX (X = O, S, Se). <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 38435-38440	9.5	5	
A Deep-UV Nonlinear Optical Borosulfate with Incommensurate Modulations. <i>Angewandte Chemie</i> , 2021 , 133, 11558-11564	3.6	5	
	Diamond-like Structure. Angewandte Chemie, 2021, 133, 13686-13690 Thermal Expansion and Second Harmonic Generation Response of the Tungsten Bronze Pb2AgNb5O15. Inorganic Chemistry, 2016, 55, 2864-9 The crystal growth and properties of novel magnetic double molybdate RbFe5(MoO4)7 with mixed Fe3+/Fe2+ states and 10 negative thermal expansion. CrystEngComm, 2021, 23, 3297-3307 Facile syntheses of silver thioantimonates exhibiting second-harmonic generation responses and large birefringence. Dalton Transactions, 2021, 50, 3568-3576 High mechanical strength in Zn4B6O13 with an unique sodalite-cage structure. RSC Advances, 2017, 7, 2038-2043 Two KBBF-Type Beryllium Borates MBeBO (M = Sr, Ba) with a Three-Dimensional (BeBO) Network. Inorganic Chemistry, 2017, 56, 12090-12093 Enhanced tetragonality and large negative thermal expansion in a new Pb/Bi-based perovskite ferroelectric of (1 Ik)PbTiO3kBi(Zn1/Zv1/Z)O3. Inorganic Chemistry Frontiers, 2019, 6, 1990-1995 Nonlinear optical ASnX (A = Na, H: X = N, P) nanosheets with divalent tin lone electron pair effect by first-principles design. Nanoscale, 2020, 12, 14895-14902 Terahertz optical properties of nonlinear optical CdSe crystals. Optical Materials, 2018, 78, 484-489 Chemical engineering of mixed halide hexaborates as nonlinear optical materials. RSC Advances, 2016, 6, 107810-107815 Ba3FeS4Br: A OD Iron-Based Chalcohalide with Unusual Magnetic Properties. European Journal of Inorganic Chemistry, 2016, 2016, 1359-1363 Synthesis, structure, and electronic structure of CsAgGa2Se4. Journal of Solid State Chemistry, 2012, 186, 54-57 Structural Design of Two Fluorine-Beryllium Borates BaMBe(BO)F (M = Mg, Ca) Containing Flexible Two-Dimensional [BeBOF] Single Layers without Structural Instability Problems. Inorganic Chemistry, 2017, 56, 11451-11454 Structural Design of Two Fluorine-Beryllium Borates BaNBe(BO)F (M = Mg, Ca) Containing Linear Bonjugated Units: A Combined Experimental and Theoretical Study. Crystal Growth and Design, 2020, 20, 1242-1247 Surface N	Diamond-like Structure. Angewandte Chemie, 2021, 133, 13686-13690 The mal Expansion and Second Harmonic Generation Response of the Tungsten Bronze PbZAgNbSO15. Inorganic Chemistry, 2016, 55, 2864-9 The crystal growth and properties of novel magnetic double molybdate RbFe5 (MoOA)7 with mixed Fe3+/Fe2+ states and 1D negative thermal expansion. CrystEngComm, 2021, 23, 3297-3307 Facile syntheses of silver thioantimonates exhibiting second-harmonic generation responses and large birefringence. Dalton Transactions, 2021, 50, 3568-3576 High mechanical strength in Zn4B6O13 with an unique sodalite-cage structure. RSC Advances, 2017, 7, 2038-2043 Two KBBF-Type Beryllium Borates MBeBO (M = Sr, Ba) with a Three-Dimensional (BeBO) Network. Inorganic Chemistry, 2017, 56, 12090-12093 Enhanced tetragonality and large negative thermal expansion in a new Pb/Bi-based perovskite ferroelectric of (1 IB)PbTiO3RBi(Zn1/2V1/2)O3. Inorganic Chemistry Frontiers, 2019, 6, 1990-1995 Nonlinear optical ASnX (A = Na, H; X = N, P) nanosheets with divalent tin lone electron pair effect by first-principles design. Nanoscale, 2020, 12, 14895-14902 Terahertz optical properties of nonlinear optical CdSe crystals. Optical Materials, 2018, 78, 484-489 33 Chemical engineering of mixed halide hexaborates as nonlinear optical materials. RSC Advances, 2016, 6, 107810-107815 Ba3FeSABr: A OD Iron-Based Chalcohalide with Unusual Magnetic Properties. European Journal of Inorganic Chemistry, 2016, 2016, 1359-1363 Synthesis, structure, and electronic structure of CsAgGa2Se4. Journal of Solid State Chemistry, 2012, 186, 54-57 Structural Design of Two Fluorine-Beryllium Borates BaMBe(BO)F (M = Mg, Ca) Containing Flexible Two-Dimensional (BeBOF) Single Layers without Structural Instability Problems. Inorganic Chemistry, 2017, 56, 11451-11454 Structural Diversity and Giant Birefringence in Cyanates BaCNOX (X = C, Br, I, and CNO) Containing Flexible Two-Dimensional (BeBOF) Single Layers without Structural Instability Problems. Inorganic Chemistry, 201	Diamond-like Structure. Angewandte Chemie, 2021, 133, 13686-13690 The rmal Expansion and Second Harmonic Generation Response of the Tungsten Bronze Pb2AgNb5015. Inorganic Chemistry, 2016, 55, 2864-9 The crystal growth and properties of novel magnetic double molybdate RbFe5(MoO4)7 with mixed Fe3+/Fe2+ states and 1D negative thermal expansion. CrystEngComm, 2021, 23, 3297-3307 33 6 Facile syntheses of silver thioantimonates exhibiting second-harmonic generation responses and large birefringence. Datton Transactions, 2021, 50, 3569-3576 High mechanical strength in Zn4B6O13 with an unique sodalite-cage structure. RSC Advances, 2017, 7, 2038-2043 Two KBBF-Type Beryllium Borates MBeBO (M= Sr, Ba) with a Three-Dimensional (BeBO) Network. Inorganic Chemistry, 2017, 56, 12090-12093 Enhanced tetragonality and large negative thermal expansion in a new Pb/Bi-based perovskite ferroelectric of (Ib)PbTiO3BB(IZn1/Zv1/Z)O3. Inorganic Chemistry Frontiers, 2019, 6, 1990-1995 Ronlinear optical ASnX (A = Na, H; X = N, P) nanosheets with divalent tin Ione electron pair effect by first-principles design. Nanoscale, 2020, 12, 14895-14902 Terahertz optical properties of nonlinear optical CdSe crystals. Optical Materials, 2018, 78, 484-489 33 5 Chemical engineering of mixed halide hexaborates as nonlinear optical materials. RSC Advances, 2016, 6, 107810-107815 Sa3FeS4Br: A OD Iron-Based Chalcohalide with Unusual Magnetic Properties. European Journal of Inorganic Chemistry, 2016, 2016, 1359-1363 Synthesis, structure, and electronic structure of CsAgCa2Se4. Journal of Solid State Chemistry, 2012, 18, 54-57 Structural Design of Two Fluorine-Beryllium Borates BaMBe(BO)F (M = Mg, Ca) Containing Flexible Two-Dimensional (BeBOF) Single Layers without Structural Instability Problems. Inorganic Chemistry, 2017, 56, 1145-11454 Structural Oversity and Glant Birefringence in Cyanates BaMBe(BO)F (M = Mg, Ca) Containing Flexible Two-Dimensional (BeBOF) Single Layers without Structural Instability Problems. Inorganic Chemistry, 2017, 56

90	Second harmonic generation of MoSi2N4-type layers. <i>Physical Review B</i> , 2021 , 103,	3.3	5
89	Deep-Ultraviolet Nonlinear-Optical van-der-Waals Beryllium Borates*. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 16680-16686	16.4	5
88	Growth, Crystal Structures, and Characteristics of LiASrMBO (A = Zn, Mg; M = Al, Ga) with [MBO] Frameworks. <i>Inorganic Chemistry</i> , 2019 , 58, 1016-1019	5.1	5
87	Nonlinear Optical Oxythiophosphate Approaching the Good Balance with Wide Ultraviolet Transparency, Strong Second Harmonic Effect, and Large Birefringence. <i>Angewandte Chemie</i> , 2021 , 133, 6456-6460	3.6	5
86	BaZnBe(BO)F: a novel zinc-beryllium borate with SBBO-type structure overcoming the polymorphism problem. <i>Dalton Transactions</i> , 2021 , 50, 2138-2142	4.3	5
85	Rb3In(SO4)3: a defluorinated mixed main-group metal sulfate for ultraviolet transparent nonlinear optical materials with a large optical band gap. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 5124-5131	7.1	5
84	ASbF3Cl (A = Rb, Cs): Structural Evolution from Centrosymmetry to Noncentrosymmetry. <i>Crystal Growth and Design</i> , 2019 , 19, 1874-1879	3.5	4
83	Chloride carbodiimide K12Pb51(CN2)30Cl54 with an unprecedented 45 Lunit cell axis and a large birefringence. <i>New Journal of Chemistry</i> , 2019 , 43, 9766-9770	3.6	4
82	K5Mo4O14F: A Novel Fluorinated Polyoxomolybdate and Its Structural Stability. <i>Inorganic Chemistry</i> , 2015 , 54, 6066-8	5.1	4
81	Borates: Analysis of Deep-UV Nonlinear Optical Borates: Approaching the End (Advanced Optical Materials 5/2014). <i>Advanced Optical Materials</i> , 2014 , 2, 410-410	8.1	4
80	Synthesis, Crystal Structure, Magnetic Property, and Electronic Structure of Ba2YbInSe5. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2013 , 639, 1021-1025	1.3	4
79	SrZnSnSe4: A quaternary selenide with large second harmonic generation and birefringence. <i>Journal of Alloys and Compounds</i> , 2022 , 904, 163944	5.7	4
78	Highly polarized [GeOTe3] motif-driven structural order promotion and an enhanced second harmonic generation response in the new nonlinear optical oxytelluride Ba3Ge2O4Te3. <i>Journal of Materials Chemistry C</i> , 2021 , 10, 150-159	7.1	4
77	From CeF2(SO4)IH2O to Ce(IO3)2(SO4): Defluorinated Homovalent Substitution for Strong Second-Harmonic-Generation Effect and Sufficient Birefringence. <i>Chemistry of Materials</i> ,	9.6	4
76	Hybrid Metal-Halide Infrared Nonlinear Optical Crystals of (TMEDA)MI5 (M = Sb, Bi) with High Stability. <i>Advanced Optical Materials</i> ,2101333	8.1	4
75	Selenite bromide nonlinear optical materials PbGaF(SeO)Br and PbNbO(SeO)Br: synthesis and characterization. <i>Dalton Transactions</i> , 2020 , 49, 14046-14051	4.3	4
74	From Centrosymmetry to Noncentrosymmetry: Tailoring the Structural Arrangements of Carbonates with Strong Nonlinear Optical Response through Partial Anion Substitution. <i>Advanced Optical Materials</i> , 2021 , 9, 2100594	8.1	4
73	Prediction of MCO [M = S, (ClB)B] Systems with Giant Optical Birefringence and Nonlinearity in the Deep-Ultraviolet Region. <i>Inorganic Chemistry</i> , 2019 , 58, 77-80	5.1	4

(2020-2020)

72	BaSrPbOCl: the first alkali-earth metal lead(ii) oxyhalide with an intriguing multimember-ring layer. <i>Dalton Transactions</i> , 2020 , 49, 3667-3671	4.3	4
71	First chiral fluorinated lead vanadate selenite Pb(VOF)(VO)(SeO) with five asymmetric motifs and large optical properties. <i>Dalton Transactions</i> , 2021 , 50, 7238-7245	4.3	4
70	Non-EConjugated Deep-Ultraviolet Nonlinear Optical Crystal KZn(SO)(HSO)F. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 8280-8284	6.4	4
69	2D van der Waals Layered [C(NH)]SOS Exhibits Desirable UV Nonlinear-Optical Trade-Off. <i>Inorganic Chemistry</i> , 2021 , 60, 14544-14549	5.1	4
68	Synthesis and Characterizations of Two Tellurides BaGaTe and BaGaGeTe with Flexible Chain Structure. <i>Inorganic Chemistry</i> , 2021 , 60, 14793-14802	5.1	4
67	Self-assembly of glycine on Cu(001): the effect of temperature and polarity. RSC Advances, 2017, 7, 41	163 <u>4</u> 12	3 3
66	Near-zero thermal expansion coordinated with geometric flexibility and Interaction in anisotropic [Zn8(SiO4)(m-BDC)6]n. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 1675-1679	6.8	3
65	Linear Zero Thermal Expansion in a Deep-Ultraviolet Transparent Crystal of BPO4 with Cristobalite-like Structure. <i>Crystal Growth and Design</i> , 2019 , 19, 3109-3112	3.5	3
64	Hydrogen-Bond-Assisted Reinforcement of Interlayer Connections in ZnBOX[HO (X = Cl, Br): Two UV Nonlinear Optical Crystals with KBBF-Type Structure. <i>Inorganic Chemistry</i> , 2020 , 59, 7789-7794	5.1	3
63	Structure and Optical Properties of K0.67Rb1.33Al2B2O7 Crystal. <i>Crystals</i> , 2017 , 7, 104	2.3	3
62	Synthesis, crystal structure and optical properties of a new fluorocarbonate with an interesting sandwich-like structure. <i>Dalton Transactions</i> , 2018 , 47, 6464-6469	4.3	3
61	Water Splitting: Atomically Thin Mesoporous In2O3N/In2S3 Lateral Heterostructures Enabling Robust Broadband-Light Photo-Electrochemical Water Splitting (Adv. Energy Mater. 9/2018). <i>Advanced Energy Materials</i> , 2018 , 8, 1870040	21.8	3
60	Syntheses, crystal structures, and characterizations of three new pyrophosphates CsNaZnP2O7, RbNaZnP2O7, and RbLiMgP2O7. <i>Solid State Sciences</i> , 2019 , 95, 105940	3.4	3
59	K3MoPO7: the first molybdenum phosphate with edge-sharing MoO6 octahedra and PO4 tetrahedra. <i>RSC Advances</i> , 2014 , 4, 27122-27125	3.7	3
58	High-temperature Raman spectroscopy of microstructure around the growing EBaB2O4crystal in the BaOB2O3Na2O system. <i>Journal of Applied Crystallography</i> , 2014 , 47, 739-744	3.8	3
57	Theoretical Basis for the Development of Borate Nonlinear Optical Crystals 2012 , 15-115		3
56	Two metal-free cyanurate crystals with a large optical birefringence resulting from the combination of Econjugated units. <i>Dalton Transactions</i> , 2021 , 50, 17495-17498	4.3	3
55	Alkali-earth metal lead(II) oxyhalide Ba27Pb8O8Cl54 exhibiting interesting [Pb4Ba4O4]8+ species. <i>New Journal of Chemistry</i> , 2020 , 44, 1699-1702	3.6	3

54	NaCdGeS: A Sodium-Rich Quaternary Wide-Band-Gap Chalcogenide with Two-Dimensional [GeCdS] Layers. <i>Inorganic Chemistry</i> , 2020 , 59, 16132-16136	5.1	3
53	AZn(PO3)3 (A = K, Rb): Deep-Ultraviolet Nonlinear Optical Phosphates Derived from Synergy of a Unique [ZnO6] Octahedron and a [PO3][Chain. <i>Crystal Growth and Design</i> , 2021 , 21, 2445-2452	3.5	3
52	Large Magnetocaloric Effect in LiKGd(BO) Crystal Featuring Sandwich-Like Three-Dimensional Framework. <i>Inorganic Chemistry</i> , 2021 , 60, 6796-6803	5.1	3
51	Molecular Engineering toward an Enlarged Optical Band Gap in a Bismuth Sulfate via Homovalent Cation Substitution. <i>Inorganic Chemistry</i> , 2021 , 60, 5851-5859	5.1	3
50	CsZnSnS: A Sulfide Compound Realizes a Large Birefringence by Modulating the Dimensional Structure. <i>Inorganic Chemistry</i> , 2021 , 60, 9248-9253	5.1	3
49	Deep-Ultraviolet Nonlinear-Optical van-der-Waals Beryllium Borates**. <i>Angewandte Chemie</i> , 2021 , 133, 16816-16822	3.6	3
48	The mechanism of the area negative thermal expansion in KBe2BO3F2 family crystals: A first-principles study. <i>Journal of Applied Physics</i> , 2016 , 119, 055901	2.5	3
47	Negative area compressibility in silver oxalate. <i>Journal of Materials Science</i> , 2021 , 56, 269-277	4.3	3
46	From Ce(IO3)4 to CeF2(IO3)2: fluorinated homovalent substitution simultaneously enhances SHG response and bandgap for mid-infrared nonlinear optics. <i>Journal of Materials Chemistry C</i> ,	7.1	3
45	Dangling Octahedra Enable Edge States in 2D Lead Halide Perovskites Advanced Materials, 2022 , e22	01 <u>6</u> 66	3
44	Three new chalcohalides, Ba4Ge2PbS8Br2, Ba4Ge2PbSe8Br2 and Ba4Ge2SnS8Br2: Syntheses, crystal structures, band gaps, and electronic structures. <i>Journal of Alloys and Compounds</i> , 2014 , 611, 422-426	5.7	2
43	Borate Nonlinear Optical Crystals for Frequency Conversion 2012 , 117-260		2
42	CdB10O14(OH)4IH2O with an unprecedented decaborate fundamental building block. <i>Materials Research Bulletin</i> , 2013 , 48, 270-276	5.1	2
41	Two non-centrosymmetric scandium borate nonlinear optical crystals containing the B5O10 anion group. <i>Journal of Alloys and Compounds</i> , 2022 , 902, 163832	5.7	2
40	Investigation into Structural Variation from 3D to 1D and Strong Second Harmonic Generation of the AHgPS (A = Na, K, Rb, Cs) Family. <i>Inorganic Chemistry</i> , 2021 , 60, 18370-18378	5.1	2
39	KCu(CNO)X (X = Cl, Br): strong anisotropic layered semiconductors containing mixed p-p and d-p conjugated Ebonds. <i>Chemical Communications</i> , 2020 , 56, 12534-12537	5.8	2
38	Cd(IO)(IO)FID.1CdO: A Nonlinear-Optical Crystal with the Introduction of Fluoride into Iodate Containing Both [IO] and [IO] Groups. <i>Inorganic Chemistry</i> , 2021 , 60, 6040-6046	5.1	2
37	La2SrB8O16: A new rare earth borate with [B8O20]16[groups exhibiting a deep ultraviolet cutoff edge. <i>Journal of Solid State Chemistry</i> , 2021 , 298, 122126	3.3	2

(2021-2021)

36	AZn(OH)(CNO) (A = Mg, Zn): Two Zn-Based Cyanurate Crystals with Various Cation Coordination and Large Birefringence. <i>Inorganic Chemistry</i> , 2021 , 60, 10890-10894	5.1	2
35	Rational Band Design in Metal Chalcogenide Ba6Zn6HfS14: Splitting Orbitals, Narrowing the Forbidden Gap, and Boosting Photocatalyst Properties. <i>Crystal Growth and Design</i> , 2019 , 19, 193-199	3.5	2
34	Nonlinear optical effects in two mercury cyanamide/guanidinium chlorides Hg3(NCN)2Cl2 and Hg2(C(NH2)3)Cl5. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 967-974	7.1	2
33	NaGaIOF: a new alkali metal gallium iodate combined with IO and IOF units. <i>Dalton Transactions</i> , 2021 , 50, 11562-11567	4.3	2
32	NaBi(IO): An Alkali-Metal Bismuth Iodate with Intriguing One-Dimensional [BiIO] Chains and Pressure-Induced Structural Transition. <i>Inorganic Chemistry</i> , 2021 , 60, 2893-2898	5.1	2
31	Synthesis, Structure, and Properties of the Non-Centrosymmeteric Compound LiNaRbB5O8(OH)2. <i>Crystal Growth and Design</i> , 2018 , 18, 5745-5749	3.5	2
30	A Congruent-Melting Mid-Infrared Nonlinear Optical Vanadate Exhibiting Strong Second-Harmonic Generation. <i>Angewandte Chemie</i> , 2021 , 133, 22621-22627	3.6	2
29	Uncovering a Vital Band Gap Mechanism of Pnictides Advanced Science, 2022, e2105787	13.6	2
28	SrI3O9H: A new alkaline earth metal iodate with two different anionic units using mild aqua-solution method. <i>Solid State Sciences</i> , 2019 , 97, 105982	3.4	1
27	Rubidium Cerium (IV) Iodates with High UV-Light-Driven Photocatalytic Efficiency. <i>ChemistrySelect</i> , 2019 , 4, 7076-7081	1.8	1
26	Cs3Na(H2C3N3O3)4BH2O: A Mixed Alkali-Metal Hydroisocyanurate Nonlinear Optical Material Containing Econjugated Six-Membered-Ring Units. <i>European Journal of Inorganic Chemistry</i> , 2019 , 2019, 2789-2789	2.3	1
25	CsLiMgP2O7: A congruently melting pyrophosphate with a [LiMgP4O18] 6-membered ring fundamental building block. <i>Solid State Sciences</i> , 2019 , 91, 23-27	3.4	1
24	Growth, Structure, and Optical Properties of Nonlinear LiGa0.55In0.45Te2 Single Crystals. <i>Crystal Growth and Design</i> , 2019 , 19, 1805-1814	3.5	1
23	Large nonlinear optical effect in tungsten bronze structures via Li/Na cross-substitutions. <i>Chemical Communications</i> , 2020 , 56, 8384-8387	5.8	1
22	Two New Ferroborates with Three-Dimensional Framework and Wide Transmittance Window. <i>European Journal of Inorganic Chemistry</i> , 2020 , 2020, 1676-1682	2.3	1
21	Two Covalent Ultraviolet Nonlinear Optical Crystals. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 775-779	4.5	1
20	Ca2SnS4: Crystal structure, optical property, and electronic structure. <i>Journal of Crystal Growth</i> , 2016 , 434, 67-71	1.6	1
19	Ca(TeO)(MO) (M = Mo, W): Mid-Infrared Nonlinear Optical Tellurates with Ultrawide Transparency Ranges and Superhigh Laser-Induced Damage Thresholds. <i>Inorganic Chemistry</i> , 2021 , 60, 18512-18520	5.1	1

18	Pnictides: An emerging class of infrared nonlinear optical material candidates. <i>Journal of Alloys and Compounds</i> , 2022 , 901, 163384	5.7	1
17	Strong SHG Responses in a Beryllium-Free Deep-UV-Transparent Hydroxyborate via Covalent Bond Modification. <i>Angewandte Chemie</i> , 2021 , 133, 27357	3.6	1
16	New quaternary chalcogenide BaHgAsS originating from the combination of linear [HgS] and tetrahedral [AsS] modules. <i>Dalton Transactions</i> , 2020 , 49, 13060-13065	4.3	1
15	Alloy Engineering of a Polar (Si,Ge)NO System for Controllable Second Harmonic Performance. <i>Inorganic Chemistry</i> , 2021 , 60, 7381-7388	5.1	1
14	Excellent performance of a cryogenic Nd:YAlO laser with low wavefront distortion based on zero thermal expansion. <i>Optics Letters</i> , 2021 , 46, 2425-2428	3	1
13	Cs3W3PO13: A Tungsten Phosphate with One-Dimensional Zigzag Tunnels Exhibiting Strongly Anisotropic Thermal Expansion. <i>Inorganic Chemistry</i> , 2016 , 55, 5113-5	5.1	1
12	Artificial Second-Order Nonlinear Optics in a Centrosymmetric Optical Material BiVO: Breaking the Prerequisite for Nonlinear Optical Materials. <i>ACS Omega</i> , 2019 , 4, 1045-1052	3.9	1
11	Growth, Structure, and Properties of a Multifunctional Crystal PrCaBO. <i>Inorganic Chemistry</i> , 2021 , 60, 10895-10898	5.1	1
10	A3Te(Zn2Ge)Ge2O14 (A = Sr, Ba, and Pb): New Langasite Mid-infrared Nonlinear Optical Materials by Rational Chemical Substitution. <i>Chemistry of Materials</i> , 2021 , 33, 6012-6017	9.6	1
9	Nd2CaB10O19: A potential self-activated and self-frequency-doubling multifunctional crystal. Journal of Solid State Chemistry, 2021 , 304, 122558	3.3	1
8	A new I3O93lgroup constructed from IO3land IO55lanion units in Cs3[Ga2O(I3O9)(IO3)4(HIO3)]. CrystEngComm, 2021 , 24, 77-82	3.3	O
7	Novel van der Waals Deep-UV Nonlinear Optical Materials. <i>Chemistry - A European Journal</i> , 2021 , 27, 1	72 6% 1	72372
6	The Anisotropic Thermal Expansion of Non-linear Optical Crystal BaAlBOF Below Room Temperature. <i>Frontiers in Chemistry</i> , 2018 , 6, 252	5	
5	LiCsPbP2O7: A new alkali metal lead pyrophosphate featuring two dimensional [LiP2O7] Dayer. Journal of Solid State Chemistry, 2019 , 280, 120823	3.3	
4	Other Borate Crystals 2012 , 261-342		
3	Innentitelbild: UV Solar-Blind-Region Phase-Matchable Optical Nonlinearity and Anisotropy in a EConjugated Cation-Containing Phosphate (Angew. Chem. 27/2021). <i>Angewandte Chemie</i> , 2021 , 133, 14842-14842	3.6	
2	Two Novel Deep-Ultraviolet Nonlinear Optical Crystals with Shorter Phase-Matching Second Harmonic Generation than KBe2BO3F2: A First-Principles Prediction (Phys. Status Solidi RRL 9/2018). <i>Physica Status Solidi - Rapid Research Letters</i> , 2018 , 12, 1870330	2.5	
1	Edge-Assisted Epitaxy of 2D TaSe 2 -MoSe 2 MetalBemiconductor Heterostructures and Application to Schottky Diodes. <i>Advanced Functional Materials</i> ,2201449	15.6	