Francesco Paneni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/709934/publications.pdf

Version: 2024-02-01

119 papers 5,576 citations

37 h-index

94433

71 g-index

121 all docs

121 docs citations

times ranked

121

8398 citing authors

#	Article	IF	CITATIONS
1	Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. European Heart Journal, 2013, 34, 2436-2443.	2.2	870
2	The Aging Cardiovascular System. Journal of the American College of Cardiology, 2017, 69, 1952-1967.	2.8	400
3	Ageing, metabolism and cardiovascular disease. Journal of Physiology, 2016, 594, 2061-2073.	2.9	311
4	Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part II. European Heart Journal, 2013, 34, 2444-2452.	2.2	282
5	Gene Silencing of the Mitochondrial Adaptor p66 ^{Shc} Suppresses Vascular Hyperglycemic Memory in Diabetes. Circulation Research, 2012, 111, 278-289.	4.5	219
6	AngiomiR-126 expression and secretion from circulating CD34+ and CD14+ PBMCs: role for proangiogenic effects and alterations in type 2 diabetics. Blood, 2013, 121, 226-236.	1.4	163
7	Adverse Epigenetic Signatures by Histone Methyltransferase Set7 Contribute to Vascular Dysfunction in Patients With Type 2 Diabetes Mellitus. Circulation: Cardiovascular Genetics, 2015, 8, 150-158.	5.1	141
8	Impact of Glycemic Variability on Chromatin Remodeling, Oxidative Stress, and Endothelial Dysfunction in Patients With Type 2 Diabetes and With Target HbA1c Levels. Diabetes, 2017, 66, 2472-2482.	0.6	139
9	MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart. European Heart Journal, 2016, 37, 572-576.	2.2	136
10	Insulin Resistance, Diabetes, and Cardiovascular Risk. Current Atherosclerosis Reports, 2014, 16, 419.	4.8	129
11	Role of the renin–angiotensin–aldosterone system and inflammatory processes in the development and progression of diastolic dysfunction. Clinical Science, 2009, 116, 467-477.	4.3	122
11	Role of the renin–angiotensin–aldosterone system and inflammatory processes in the development and progression of diastolic dysfunction. Clinical Science, 2009, 116, 467-477. SIRT1, p66Shc, and Set7/9 in Vascular Hyperglycemic Memory. Diabetes, 2013, 62, 1800-1807.	4.3	122 96
	and progression of diastolic dysfunction. Clinical Science, 2009, 116, 467-477.		
12	and progression of diastolic dysfunction. Clinical Science, 2009, 116, 467-477. SIRT1, p66Shc, and Set7/9 in Vascular Hyperglycemic Memory. Diabetes, 2013, 62, 1800-1807. Deletion of the Activated Protein-1 Transcription Factor JunD Induces Oxidative Stress and	0.6	96
12	and progression of diastolic dysfunction. Clinical Science, 2009, 116, 467-477. SIRT1, p66Shc, and Set7/9 in Vascular Hyperglycemic Memory. Diabetes, 2013, 62, 1800-1807. Deletion of the Activated Protein-1 Transcription Factor JunD Induces Oxidative Stress and Accelerates Age-Related Endothelial Dysfunction. Circulation, 2013, 127, 1229-1240. Endothelial overexpression of LOX-1 increases plaque formation and promotes atherosclerosis in	0.6	96
12 13 14	and progression of diastolic dysfunction. Clinical Science, 2009, 116, 467-477. SIRT1, p66Shc, and Set7/9 in Vascular Hyperglycemic Memory. Diabetes, 2013, 62, 1800-1807. Deletion of the Activated Protein-1 Transcription Factor JunD Induces Oxidative Stress and Accelerates Age-Related Endothelial Dysfunction. Circulation, 2013, 127, 1229-1240. Endothelial overexpression of LOX-1 increases plaque formation and promotes atherosclerosis in vivo. European Heart Journal, 2014, 35, 2839-2848. Epigenetics and precision medicine in cardiovascular patients: from basic concepts to the clinical	0.6 1.6 2.2	96 90 82
12 13 14	and progression of diastolic dysfunction. Clinical Science, 2009, 116, 467-477. SIRT1, p66Shc, and Set7/9 in Vascular Hyperglycemic Memory. Diabetes, 2013, 62, 1800-1807. Deletion of the Activated Protein-1 Transcription Factor JunD Induces Oxidative Stress and Accelerates Age-Related Endothelial Dysfunction. Circulation, 2013, 127, 1229-1240. Endothelial overexpression of LOX-1 increases plaque formation and promotes atherosclerosis in vivo. European Heart Journal, 2014, 35, 2839-2848. Epigenetics and precision medicine in cardiovascular patients: from basic concepts to the clinical arena. European Heart Journal, 2018, 39, 4150-4158. Right Ventricular Dysfunction in Patients with End-Stage Renal Disease. American Journal of	0.6 1.6 2.2 2.2	96 90 82 79

#	Article	IF	CITATIONS
19	Deletion of the ageing gene p66Shc reduces early stroke size following ischaemia/reperfusion brain injury. European Heart Journal, 2013, 34, 96-103.	2.2	72
20	Interleukin- $1\hat{l}^2$ Mediates Arterial Thrombus Formation via NET-Associated Tissue Factor. Journal of Clinical Medicine, 2019, 8, 2072.	2.4	70
21	Obesity-induced activation of JunD promotes myocardial lipid accumulation and metabolic cardiomyopathy. European Heart Journal, 2019, 40, 997-1008.	2.2	69
22	Exercise training for patients with type 2 diabetes and cardiovascular disease: What to pursue and how to do it. A Position Paper of the European Association of Preventive Cardiology (EAPC). European Journal of Preventive Cardiology, 2019, 26, 709-727.	1.8	68
23	Cardiovascular Protection in the Treatment of Type 2 Diabetes: A Review of Clinical Trial Results Across Drug Classes. American Journal of Medicine, 2017, 130, S18-S29.	1.5	67
24	Cardiovascular Protection in the Treatment of Type 2 Diabetes: AÂReview of Clinical Trial Results Across Drug Classes. American Journal of Cardiology, 2017, 120, S17-S27.	1.6	66
25	Sirtuin 5 as a novel target to blunt blood–brain barrier damage induced by cerebral ischemia/reperfusion injury. International Journal of Cardiology, 2018, 260, 148-155.	1.7	64
26	Epigenetic signatures and vascular risk in type 2 diabetes: A clinical perspective. Atherosclerosis, 2013, 230, 191-197.	0.8	62
27	The elevation of circulating fibroblast growth factor 23 without kidney disease does not increaseÂcardiovascular disease risk. Kidney International, 2018, 94, 49-59.	5.2	62
28	From traditional pharmacological towards nucleic acid-based therapies for cardiovascular diseases. European Heart Journal, 2020, 41, 3884-3899.	2.2	58
29	Endothelial SIRT6 blunts stroke size and neurological deficit by preserving blood–brain barrier integrity: a translational study. European Heart Journal, 2020, 41, 1575-1587.	2.2	54
30	Role of oxidative stress in endothelial insulin resistance. World Journal of Diabetes, 2015, 6, 326.	3.5	51
31	Post-ischaemic administration of the murine Canakinumab-surrogate antibody improves outcome in experimental stroke. European Heart Journal, 2018, 39, 3511-3517.	2.2	48
32	Hyperglycaemia-induced epigenetic changes drive persistent cardiac dysfunction via the adaptor p66Shc. International Journal of Cardiology, 2018, 268, 179-186.	1.7	47
33	Interplay among H3K9-editing enzymes SUV39H1, JMJD2C and SRC-1 drives p66Shc transcription and vascular oxidative stress in obesity. European Heart Journal, 2019, 40, 383-391.	2.2	45
34	Epigenetic processing in cardiometabolic disease. Atherosclerosis, 2019, 281, 150-158.	0.8	44
35	Molecular pathways of arterial aging. Clinical Science, 2015, 128, 69-79.	4.3	42
36	Inflammation in Metabolic Cardiomyopathy. Frontiers in Cardiovascular Medicine, 2021, 8, 742178.	2.4	42

3

#	Article	IF	CITATIONS
37	Epigenetics and cardiovascular regenerative medicine in the elderly. International Journal of Cardiology, 2018, 250, 207-214.	1.7	41
38	Pin1 inhibitor Juglone prevents diabetic vascular dysfunction. International Journal of Cardiology, 2016, 203, 702-707.	1.7	39
39	Epigenetic Control of Mitochondrial Function in the Vasculature. Frontiers in Cardiovascular Medicine, 2020, 7, 28.	2.4	39
40	Hyperglycemia Induces Myocardial Dysfunction via Epigenetic Regulation of JunD. Circulation Research, 2020, 127, 1261-1273.	4.5	38
41	Genetic deletion of the adaptor protein p66Shc increases susceptibility to short-term ischaemic myocardial injury via intracellular salvage pathways. European Heart Journal, 2015, 36, 516-526.	2.2	37
42	Leveraging clinical epigenetics in heart failure with preserved ejection fraction: a call for individualized therapies. European Heart Journal, 2021, 42, 1940-1958.	2.2	34
43	Effects of atorvastatin and rosuvastatin on renal function: A meta-analysis. International Journal of Cardiology, 2013, 167, 2482-2489.	1.7	33
44	Antihypertensive Therapy in Diabetes: The Legacy Effect and RAAS Blockade. Current Hypertension Reports, 2011, 13, 318-324.	3.5	31
45	p66Shc-induced redox changes drive endothelial insulin resistance. Atherosclerosis, 2014, 236, 426-429.	0.8	31
46	Targeting Chromatin Remodeling to Prevent Cardiovascular Disease in Diabetes. Current Pharmaceutical Biotechnology, 2015, 16, 531-543.	1.6	30
47	Molecular mechanisms of vascular dysfunction and cardiovascular biomarkers in type 2 diabetes. Cardiovascular Diagnosis and Therapy, 2014, 4, 324-32.	1.7	30
48	Do diabetes, metabolic syndrome or their association equally affect biventricular function? A tissue Doppler study. Hypertension Research, 2013, 36, 36-42.	2.7	28
49	Soluble lectin-like oxidized low-density lipoprotein receptor-1 predicts premature death in acute coronary syndromes. European Heart Journal, 2022, 43, 1849-1860.	2.2	28
50	Reprogramming ageing and longevity genes restores paracrine angiogenic properties of early outgrowth cells. European Heart Journal, 2016, 37, 1733-1737.	2.2	27
51	Endothelial LOX-1 activation differentially regulates arterial thrombus formation depending on oxLDL levels: role of the Oct-1/SIRT1 and ERK1/2 pathways. Cardiovascular Research, 2017, 113, 498-507.	3.8	27
52	Sirt6 deletion in bone marrow-derived cells increases atherosclerosis â€" Central role of macrophage scavenger receptor 1. Journal of Molecular and Cellular Cardiology, 2020, 139, 24-32.	1.9	26
53	Characterization of hemodynamic and metabolic abnormalities in the heart failure spectrum: the role of combined cardiopulmonary and exercise echocardiography stress test. Minerva Cardiology and Angiology, 2022, 70, .	0.7	26
54	An overview of the molecular mechanisms underlying development and progression of bicuspid aortic valve disease. Journal of Molecular and Cellular Cardiology, 2019, 132, 146-153.	1.9	23

#	Article	IF	Citations
55	2013 ESC/EASD guidelines on the management of diabetes and cardiovascular disease: Established knowledge and evidence gaps. Diabetes and Vascular Disease Research, 2014, 11, 5-10.	2.0	22
56	p66 Shc as the Engine of Vascular Aging. Current Vascular Pharmacology, 2012, 10, 697-699.	1.7	21
57	The epigenetic landscape in the cardiovascular complications of diabetes. Journal of Endocrinological Investigation, 2019, 42, 505-511.	3.3	21
58	Relation between right and left ventricular function in patients undergoing chronic dialysis. Journal of Cardiovascular Medicine, 2013, 14, 289-295.	1.5	20
59	Deletion of fibroblast activation protein provides atheroprotection. Cardiovascular Research, 2021, 117, 1060-1069.	3.8	20
60	Epigenetic modulation of tenascin C in the heart. Journal of Hypertension, 2019, 37, 1861-1870.	0.5	19
61	Epigenetic Remodeling in Obesity-Related Vascular Disease. Antioxidants and Redox Signaling, 2021, 34, 1165-1199.	5.4	19
62	Abnormal Regulation of Renin Angiotensin Aldosterone System Is Associated With Right Ventricular Dysfunction inÂHypertension. Canadian Journal of Cardiology, 2014, 30, 188-194.	1.7	18
63	Hyperglycemia: a bad signature on the vascular system. Cardiovascular Diagnosis and Therapy, 2015, 5, 403-6.	1.7	17
64	Epi-Drugs in Heart Failure. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	17
65	The BET Protein Inhibitor Apabetalone Rescues Diabetes-Induced Impairment of Angiogenic Response by Epigenetic Regulation of Thrombospondin-1. Antioxidants and Redox Signaling, 2022, 36, 667-684.	5.4	15
66	Cell-specific epigenetic changes in atherosclerosis. Clinical Science, 2021, 135, 1165-1187.	4.3	14
67	MMP-2 knockdown blunts age-dependent carotid stiffness by decreasing elastin degradation and augmenting eNOS activation. Cardiovascular Research, 2022, 118, 2385-2396.	3.8	14
68	Cardiomyocyte-Specific JunD Overexpression Increases Infarct Size following Ischemia/Reperfusion Cardiac Injury by Downregulating Sirt3. Thrombosis and Haemostasis, 2020, 120, 168-180.	3.4	13
69	Sirtuin 5 promotes arterial thrombosis by blunting the fibrinolytic system. Cardiovascular Research, 2021, 117, 2275-2288.	3.8	13
70	Modulating Sirtuin Biology and Nicotinamide Adenine Diphosphate Metabolism in Cardiovascular Diseaseâ€"From Bench to Bedside. Frontiers in Physiology, 2021, 12, 755060.	2.8	13
71	DPP-4 inhibitors, heart failure and type 2 diabetes: all eyes on safety. Cardiovascular Diagnosis and Therapy, 2015, 5, 471-8.	1.7	13
72	New Mechanisms of Vascular Dysfunction in Cardiometabolic Patients: Focus on Epigenetics. High Blood Pressure and Cardiovascular Prevention, 2020, 27, 363-371.	2.2	12

#	Article	lF	Citations
73	The NO-donor MPC-1011 stimulates angiogenesis and arteriogenesis and improves hindlimb ischemia via a cGMP-dependent pathway involving VEGF and SDF-1 $\hat{l}\pm$. Atherosclerosis, 2020, 304, 30-38.	0.8	12
74	Atrial fibrillation in the cardiometabolic patient. Minerva Medica, 2019, 110, 157-167.	0.9	12
75	Impact of dialysis modality on the appropriateness of left ventricular mass in patients with end-stage renal disease. International Journal of Cardiology, 2011, 149, 250-252.	1.7	11
76	Clinical SYNTAX score predicts outcomes of patients undergoing coronary artery bypass grafting. American Heart Journal, 2017, 188, 118-126.	2.7	11
77	Regression of left ventricular hypertrophy with SGLT2 inhibitors. European Heart Journal, 2020, 41, 3433-3436.	2.2	11
78	Methylation of the Hippo effector YAP by the methyltransferase SETD7 drives myocardial ischaemic injury: a translational study. Cardiovascular Research, 2023, 118, 3374-3385.	3.8	10
79	Residual SYNTAX score following coronary artery bypass graftingâ€. European Journal of Cardio-thoracic Surgery, 2016, 51, ezw356.	1.4	9
80	Empagliflozin across the stages of diabetic heart disease. European Heart Journal, 2018, 39, 371-373.	2.2	9
81	Role of the Nuclear Receptor Corepressor 1 (NCOR1) in Atherosclerosis and Associated Immunometabolic Diseases. Frontiers in Immunology, 2020, 11, 569358.	4.8	9
82	Advanced glycation endproducts and plaque instability: a link beyond diabetes. European Heart Journal, 2014, 35, 1095-1097.	2.2	8
83	PCSK9 in diabetes: sweet, bitter or sour?. European Heart Journal, 2019, 40, 369-371.	2.2	8
84	Epigenetic remodeling in heart failure with preserved ejection fraction. Current Opinion in Cardiology, 2022, 37, 219-226.	1.8	7
85	GLP-1-based therapies to boost autophagy in cardiometabolic patients: From experimental evidence to clinical trials. Vascular Pharmacology, 2019, 115, 64-68.	2.1	6
86	Disentangling the epigenetic landscape in cardiovascular patients: a path toward personalized medicine. Minerva Cardiology and Angiology, 2021, 69, 331-345.	0.7	6
87	The vascular epigenome in patients with obesity and type 2 diabetes: opportunities for personalized therapies. Vascular Biology (Bristol, England), 2020, 2, H19-H28.	3.2	6
88	Predictors of Successful Ultrasound Guided Femoral Vein Cannulation in Electrophysiological Procedures. Journal of Atrial Fibrillation, 2018, 11, 2083.	0.5	6
89	Shooting vascular oxidative stress: new hopes for stroke patients?: FigureÂ1. European Heart Journal, 2015, 36, 1573-1575.	2.2	5
90	The Epigenome in Atherosclerosis. Handbook of Experimental Pharmacology, 2020, , 511-535.	1.8	5

#	Article	IF	CITATIONS
91	Adeno-Associated Virus-Mediated Gain-of-Function mPCSK9 Expression in the Mouse Induces Hypercholesterolemia, Monocytosis, Neutrophilia, and a Hypercoagulative State. Frontiers in Cardiovascular Medicine, 2021, 8, 718741.	2.4	4
92	Diabetes and cardiovascular disease: let's push forward with translational research. Cardiovascular Diagnosis and Therapy, 2015, 5, 407-11.	1.7	4
93	Increased risk of incident diabetes in patients with long COVID. European Heart Journal, 2022, 43, 2094-2095.	2.2	4
94	Tackling myocardial oxidative stress with empagliflozin: are we big enough to fight heart failure with preserved ejection fraction?. Cardiovascular Research, 2021, 117, 343-345.	3.8	3
95	Diabetes and heart failure: from disease mechanisms to personalized care. Minerva Cardiology and Angiology, 2022, 70, 341-343.	0.7	3
96	Epidemiology, Definition, and Diagnosis of Diabetes Mellitus. , 2015, , 3-12.		2
97	Stakeholders in non-Vitamin K antagonist oral anticoagulants prescription: the case of Italy. Europace, 2016, 18, 788.1-788.	1.7	2
98	A call for safety during electrophysiological procedures: US in, why not US out?. Europace, 2017, 19, 2048-2048.	1.7	2
99	Stem cell therapy in heart failure: Is the best yet to come?. International Journal of Cardiology, 2018, 260, 135-136.	1.7	2
100	Molecular underpinnings of myocardial stiffness in patients with hypertrophic cardiomyopathy. International Journal of Cardiology, 2021, 343, 80-82.	1.7	2
101	Sex-related differences in the ageing brain: time for precision medicine?. Cardiovascular Research, 2020, 116, 1246-1248.	3.8	2
102	Upcoming Challenges for Training in Cardiology. High Blood Pressure and Cardiovascular Prevention, 2007, 14, 201-206.	2.2	1
103	A case of thrombolysis in acute pulmonary embolism with right atrial thrombus: comparing current and past guidelines. Internal and Emergency Medicine, 2009, 4, 497-500.	2.0	1
104	Novel Lipids Targets in the Era of Metabolic Syndrome. High Blood Pressure and Cardiovascular Prevention, 2009, 16, 93-100.	2.2	1
105	Mechanisms of Cardiovascular Aging. Current Translational Geriatrics and Experimental Gerontology Reports, 2013, 2, 275-283.	0.7	1
106	Intrinsic bleeding risk in patients with uninterrupted oral anticoagulation undergoing cardiac implantable electronic device procedures: A pilot study. International Journal of Cardiology, 2014, 176, 1420-1422.	1.7	1
107	Image integration guided ablation of left outflow tract ventricular tachycardia: Is coronary angiography still necessary?. Indian Pacing and Electrophysiology Journal, 2018, 18, 73-75.	0.6	1
108	Obesity-induced impairment of pluripotent stem cells: novel insights into vascular repair strategies. European Heart Journal, 2019, 40, e11-e13.	2.2	1

#	Article	lF	CITATIONS
109	MicroRNA-122 in heart failure with reduced ejection fraction: Epiphenomenon or causal?. International Journal of Cardiology, 2020, 303, 66-67.	1.7	1
110	A â€~Once-and-Done' Approach to the Lifelong Reduction of Elevated Cholesterol. European Heart Journal, 2021, 42, 3820-3821.	2.2	1
111	Exploring RNA biomarkers in patients with acute myocarditis. European Heart Journal, 2021, 42, 3425-3426.	2.2	1
112	Is tirzepatide in the surpass lane over GLP-1 receptor agonists for the treatment of diabetes?. European Heart Journal, 2021, 42, 4211-4212.	2.2	1
113	The Apelin/APJ System. High Blood Pressure and Cardiovascular Prevention, 2006, 13, 159-162.	2.2	0
114	The Growing Importance of Socioeconomic Aspects in Cardiovascular Disease. High Blood Pressure and Cardiovascular Prevention, 2007, 14, 139-144.	2.2	0
115	The Microvolt T-Wave Alternans Test. High Blood Pressure and Cardiovascular Prevention, 2007, 14, 213-219.	2.2	0
116	Authors' reply to Dr. Schmitz and Dr. Brand comments on "Epigenetics and Cardiovascular Regenerative Medicine in the Elderlyâ€, International Journal of Cardiology, 2018, 257, 274.	1.7	0
117	Thromboembolic Events Following Atrial Fibrillation Cardioversion and Ablation: What's the Culprit?. Medicina (Lithuania), 2019, 55, 505.	2.0	0
118	Risk Stratification., 2015,, 69-83.		0
119	Environment, Epigenetic Changes, and Cardiovascular Damage. , 2015, , 35-47.		О