Robert A Quinn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7099152/publications.pdf

Version: 2024-02-01

49 papers

8,115 citations

168829 31 h-index 223390 49 g-index

53 all docs 53 docs citations

53 times ranked 11706 citing authors

#	Article	IF	CITATIONS
1	A restructuring of microbiome niche space is associated with Elexacaftor-Tezacaftor-Ivacaftor therapy in the cystic fibrosis lung. Journal of Cystic Fibrosis, 2022, 21, 996-1005.	0.3	34
2	Multi-omics analyses of the ulcerative colitis gut microbiome link Bacteroides vulgatus proteases with disease severity. Nature Microbiology, 2022, 7, 262-276.	5.9	110
3	Intrapopulation adaptive variance supports thermal tolerance in a reef-building coral. Communications Biology, 2022, 5, 486.	2.0	18
4	Complex and unexpected outcomes of antibiotic therapy against a polymicrobial infection. ISME Journal, 2022, 16, 2065-2075.	4.4	11
5	Longitudinal effects of growth restriction on the murine gut microbiome and metabolome. American Journal of Physiology - Endocrinology and Metabolism, 2022, 323, E159-E170.	1.8	1
6	Auto-deconvolution and molecular networking of gas chromatography–mass spectrometry data. Nature Biotechnology, 2021, 39, 169-173.	9.4	78
7	Metabotypes of Pseudomonas aeruginosa Correlate with Antibiotic Resistance, Virulence and Clinical Outcome in Cystic Fibrosis Chronic Infections. Metabolites, 2021, 11, 63.	1.3	20
8	Reply to: Examining microbe–metabolite correlations by linear methods. Nature Methods, 2021, 18, 40-41.	9.0	6
9	Metabolomic signatures of coral bleaching history. Nature Ecology and Evolution, 2021, 5, 495-503.	3.4	59
10	Three-Dimensional Molecular Cartography of the Caribbean Reef-Building Coral Orbicella faveolata. Frontiers in Marine Science, 2021, 8, .	1.2	11
11	Review: microbial transformations of human bile acids. Microbiome, 2021, 9, 140.	4.9	276
12	Bridging the Gap between Analytical and Microbial Sciences in Microbiome Research. MSystems, 2021, 6, e0058521.	1.7	4
13	Streptozotocin-induced hyperglycemia alters the cecal metabolome and exacerbates antibiotic-induced dysbiosis. Cell Reports, 2021, 37, 110113.	2.9	11
14	Untargeted mass spectrometry-based metabolomics approach unveils molecular changes in raw and processed foods and beverages. Food Chemistry, 2020, 302, 125290.	4.2	52
15	Involvement of the Gut Microbiota and Barrier Function in Glucocorticoidâ€Induced Osteoporosis. Journal of Bone and Mineral Research, 2020, 35, 801-820.	3.1	101
16	Mass spectrometry searches using MASST. Nature Biotechnology, 2020, 38, 23-26.	9.4	160
17	Evaluating Organism-Wide Changes in the Metabolome and Microbiome following a Single Dose of Antibiotic. MSystems, 2020, 5, .	1.7	6
18	Mining Public Mass Spectrometry Data to Characterize the Diversity and Ubiquity of P. aeruginosa Specialized Metabolites. Metabolites, 2020, 10, 445.	1.3	13

#	Article	IF	CITATIONS
19	Feature-based molecular networking in the GNPS analysis environment. Nature Methods, 2020, 17, 905-908.	9.0	650
20	ReDU: a framework to find and reanalyze public mass spectrometry data. Nature Methods, 2020, 17, 901-904.	9.0	79
21	A multiomic analysis of in situ coral–turf algal interactions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13588-13595.	3.3	48
22	High-Resolution Longitudinal Dynamics of the Cystic Fibrosis Sputum Microbiome and Metabolome through Antibiotic Therapy. MSystems, 2020, 5, .	1.7	47
23	Paroxetine Administration Affects Microbiota and Bile Acid Levels in Mice. Frontiers in Psychiatry, 2020, 11, 518.	1.3	19
24	Global chemical effects of the microbiome include new bile-acid conjugations. Nature, 2020, 579, 123-129.	13.7	316
25	Microbial Transformations of Organically Fermented Foods. Metabolites, 2019, 9, 165.	1.3	20
26	Optimizing sequencing protocols for leaderboard metagenomics by combining long and short reads. Genome Biology, 2019, 20, 226.	3.8	47
27	Learning representations of microbe–metabolite interactions. Nature Methods, 2019, 16, 1306-1314.	9.0	184
28	Molecular and Microbial Microenvironments in Chronically Diseased Lungs Associated with Cystic Fibrosis. MSystems, 2019, 4, .	1.7	23
29	Cystic Fibrosis Rapid Response: Translating Multi-omics Data into Clinically Relevant Information. MBio, 2019, 10, .	1.8	20
30	Neutrophilic proteolysis in the cystic fibrosis lung correlates with a pathogenic microbiome. Microbiome, 2019, 7, 23.	4.9	53
31	Niche partitioning of a pathogenic microbiome driven by chemical gradients. Science Advances, 2018, 4, eaau1908.	4.7	40
32	Best practices for analysing microbiomes. Nature Reviews Microbiology, 2018, 16, 410-422.	13.6	1,138
33	Before platelets: the production of platelet-activating factor during growth and stress in a basal marine organism. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181307.	1.2	20
34	Balance Trees Reveal Microbial Niche Differentiation. MSystems, 2017, 2, .	1.7	284
35	Meta-mass shift chemical profiling of metabolomes from coral reefs. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11685-11690.	3.3	57
36	The WinCF Model - An Inexpensive and Tractable Microcosm of a Mucus Plugged Bronchiole to Study the Microbiology of Lung Infections. Journal of Visualized Experiments, 2017, , .	0.2	8

#	Article	IF	CITATIONS
37	Molecular Networking As a Drug Discovery, Drug Metabolism, and Precision Medicine Strategy. Trends in Pharmacological Sciences, 2017, 38, 143-154.	4.0	250
38	From Sample to Multi-Omics Conclusions in under 48 Hours. MSystems, 2016, 1, .	1.7	53
39	Metabolomics of reef benthic interactions reveals a bioactive lipid involved in coral defence. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160469.	1.2	55
40	Mass Spectrometry-Based Visualization of Molecules Associated with Human Habitats. Analytical Chemistry, 2016, 88, 10775-10784.	3.2	44
41	Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 2016, 34, 828-837.	9.4	2,802
42	Ecological networking of cystic fibrosis lung infections. Npj Biofilms and Microbiomes, 2016, 2, 4.	2.9	77
43	Microbial, host and xenobiotic diversity in the cystic fibrosis sputum metabolome. ISME Journal, 2016, 10, 1483-1498.	4.4	88
44	Metabolomics of pulmonary exacerbations reveals the personalized nature of cystic fibrosis disease. PeerJ, 2016, 4, e2174.	0.9	45
45	A Winogradsky-based culture system shows an association between microbial fermentation and cystic fibrosis exacerbation. ISME Journal, 2015, 9, 1024-1038.	4.4	59
46	Illuminating the dark matter in metabolomics. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12549-12550.	3.3	387
47	Breath gas metabolites and bacterial metagenomes from cystic fibrosis airways indicate active pH neutral 2,3-butanedione fermentation. ISME Journal, 2014, 8, 1247-1258.	4.4	114
48	Biogeochemical Forces Shape the Composition and Physiology of Polymicrobial Communities in the Cystic Fibrosis Lung. MBio, 2014, 5, e00956-13.	1.8	94
49	The Community Ecology of Microbial Molecules. Journal of Chemical Ecology, 2014, 40, 1161-1162.	0.9	2