
## William J Peveler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7099123/publications.pdf Version: 2024-02-01



WILLIAM | DEVELED

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules. Nature Communications, 2016, 7, 12189.                                                      | 12.8 | 201       |
| 2  | Arrayâ€based "Chemical Nose―Sensing in Diagnostics and Drug Discovery. Angewandte Chemie -<br>International Edition, 2019, 58, 5190-5200.                                                                             | 13.8 | 165       |
| 3  | Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chemical Reviews, 2021, 121, 9243-9358.                                                                                              | 47.7 | 162       |
| 4  | Selectivity and Specificity: Pros and Cons in Sensing. ACS Sensors, 2016, 1, 1282-1285.                                                                                                                               | 7.8  | 153       |
| 5  | Multichannel Detection and Differentiation of Explosives with a Quantum Dot Array. ACS Nano, 2016, 10, 1139-1146.                                                                                                     | 14.6 | 120       |
| 6  | Sensitive and specific detection of explosives in solution and vapour by surface-enhanced Raman spectroscopy on silver nanocubes. Nanoscale, 2017, 9, 16459-16466.                                                    | 5.6  | 78        |
| 7  | The vapour phase detection of explosive markers and derivatives using two fluorescent<br>metal–organic frameworks. Journal of Materials Chemistry A, 2015, 3, 6351-6359.                                              | 10.3 | 69        |
| 8  | A Rapid and Robust Diagnostic for Liver Fibrosis Using a Multichannel Polymer Sensor Array.<br>Advanced Materials, 2018, 30, e1800634.                                                                                | 21.0 | 62        |
| 9  | Dynamics of Photoâ€Induced Surface Oxygen Vacancies in Metalâ€Oxide Semiconductors Studied Under<br>Ambient Conditions. Advanced Science, 2019, 6, 1901841.                                                           | 11.2 | 62        |
| 10 | Thiol-Capped Gold Nanoparticles Swell-Encapsulated into Polyurethane as Powerful Antibacterial Surfaces Under Dark and Light Conditions. Scientific Reports, 2016, 6, 39272.                                          | 3.3  | 54        |
| 11 | Sensing and Discrimination of Explosives at Variable Concentrations with a Large-Pore MOF as Part of a Luminescent Array. ACS Applied Materials & amp; Interfaces, 2019, 11, 11618-11626.                             | 8.0  | 54        |
| 12 | Comparison of Semiconducting Polymer Dots and Semiconductor Quantum Dots for<br>Smartphone-Based Fluorescence Assays. Analytical Chemistry, 2019, 91, 10955-10960.                                                    | 6.5  | 45        |
| 13 | Lethal photosensitisation of Staphylococcus aureus and Escherichia coli using crystal violet and zinc oxide-encapsulated polyurethane. Journal of Materials Chemistry B, 2015, 3, 6490-6500.                          | 5.8  | 43        |
| 14 | Enhancing the Antibacterial Activity of Light-Activated Surfaces Containing Crystal Violet and ZnO<br>Nanoparticles: Investigation of Nanoparticle Size, Capping Ligand, and Dopants. ACS Omega, 2016, 1,<br>334-343. | 3.5  | 41        |
| 15 | Plasmonic Gold Nanostars Incorporated into Highâ€Efficiency Perovskite Solar Cells. ChemSusChem,<br>2017, 10, 3750-3753.                                                                                              | 6.8  | 39        |
| 16 | Small Surface, Big Effects, and Big Challenges: Toward Understanding Enzymatic Activity at the<br>Inorganic Nanoparticle–Substrate Interface. Langmuir, 2019, 35, 7067-7091.                                          | 3.5  | 39        |
| 17 | Detection of explosive markers using zeolite modified gas sensors. Journal of Materials Chemistry A,<br>2013, 1, 2613.                                                                                                | 10.3 | 36        |
| 18 | Nanoparticle–sulphur "inverse vulcanisation―polymer composites. Chemical Communications, 2015,<br>51, 10467-10470.                                                                                                    | 4.1  | 35        |

WILLIAM J PEVELER

| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Covalently Attached Antimicrobial Surfaces Using BODIPY: Improving Efficiency and Effectiveness. ACS<br>Applied Materials & Interfaces, 2018, 10, 98-104.                                       | 8.0  | 35        |
| 20 | More Than a Light Switch: Engineering Unconventional Fluorescent Configurations for Biological Sensing. ACS Chemical Biology, 2018, 13, 1752-1766.                                              | 3.4  | 31        |
| 21 | Selective Detection of Nitroexplosives Using Molecular Recognition within Self-Assembled Plasmonic<br>Nanojunctions. Journal of Physical Chemistry C, 2019, 123, 15769-15776.                   | 3.1  | 31        |
| 22 | Plasmonic Nanoprobes for Stimulated Emission Depletion Nanoscopy. ACS Nano, 2016, 10, 10454-10461.                                                                                              | 14.6 | 29        |
| 23 | Organic–inorganic hybrid materials: nanoparticle containing organogels with myriad applications.<br>Chemical Communications, 2014, 50, 14418-14420.                                             | 4.1  | 28        |
| 24 | Photosensitisation studies of silicone polymer doped with methylene blue and nanogold for antimicrobial applications. RSC Advances, 2015, 5, 54830-54842.                                       | 3.6  | 28        |
| 25 | Amine Molecular Cages as Supramolecular Fluorescent Explosive Sensors: A Computational<br>Perspective. Journal of Physical Chemistry B, 2016, 120, 5063-5072.                                   | 2.6  | 28        |
| 26 | Whisky tasting using a bimetallic nanoplasmonic tongue. Nanoscale, 2019, 11, 15216-15223.                                                                                                       | 5.6  | 23        |
| 27 | Advanced analysis of nanoparticle composites $\hat{a} \in \hat{a}$ a means toward increasing the efficiency of functional materials. RSC Advances, 2015, 5, 53789-53795.                        | 3.6  | 16        |
| 28 | Yellowish-orange and red emitting quinoline-based iridium(III) complexes: Synthesis, thermal, optical and electrochemical properties and OLED application. Synthetic Metals, 2020, 268, 116504. | 3.9  | 15        |
| 29 | Rapid synthesis of gold nanostructures with cyclic and linear ketones. RSC Advances, 2013, 3, 21919.                                                                                            | 3.6  | 14        |
| 30 | Nanoparticles in explosives detection – the state-of-the-art and future directions. Forensic Science,<br>Medicine, and Pathology, 2017, 13, 490-494.                                            | 1.4  | 14        |
| 31 | Arrayâ€basierte Sensorik mit der "chemischen Nase―in der Diagnostik und Wirkstoffentdeckung.<br>Angewandte Chemie, 2019, 131, 5244-5255.                                                        | 2.0  | 13        |
| 32 | A new family of urea-based low molecular-weight organogelators for environmental remediation: the influence of structure. Soft Matter, 2018, 14, 8821-8827.                                     | 2.7  | 11        |
| 33 | Cucurbituril-mediated quantum dot aggregates formed by aqueous self-assembly for sensing applications. Chemical Communications, 2019, 55, 5495-5498.                                            | 4.1  | 11        |
| 34 | Chiral Quantum Metamaterial for Hypersensitive Biomolecule Detection. ACS Nano, 2021, 15, 19905-19916.                                                                                          | 14.6 | 11        |
| 35 | Superhydrophobic Au/polymer nanocomposite films via AACVD/swell encapsulation tandem synthesis procedure. RSC Advances, 2016, 6, 31146-31152.                                                   | 3.6  | 10        |
| 36 | Carbazole-based D-Ï€-A molecules: Determining the photophysical properties and comparing ICT effects<br>of π-spacer and acceptor groups. Journal of Molecular Structure, 2021, 1239, 130494.    | 3.6  | 10        |

WILLIAM J PEVELER

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Synthesis of novel multifunctional carbazole-based molecules and their thermal, electrochemical and optical properties. Beilstein Journal of Organic Chemistry, 2020, 16, 1066-1074.                         | 2.2  | 8         |
| 38 | A red-orange carbazole-based iridium(III) complex: Synthesis, thermal, optical and electrochemical properties and OLED application. Journal of Organometallic Chemistry, 2021, 951, 122004.                  | 1.8  | 7         |
| 39 | Surface Oxygen Vacancies: Dynamics of Photoâ€Induced Surface Oxygen Vacancies in Metalâ€Oxide<br>Semiconductors Studied Under Ambient Conditions (Adv. Sci. 22/2019). Advanced Science, 2019, 6,<br>1970132. | 11.2 | 3         |
| 40 | Myelinated axons are the primary target of hemin-mediated oxidative damage in a model of the central nervous system. Experimental Neurology, 2022, 354, 114113.                                              | 4.1  | 3         |
| 41 | In situ formation of low molecular weight organogelators for slick solidification. RSC Advances, 2020, 10, 13369-13373.                                                                                      | 3.6  | 2         |
| 42 | Photo-induced enhanced Raman spectroscopy (PIERS): sensing atomic-defects, explosives and biomolecules. , 2019, , .                                                                                          |      | 2         |
| 43 | Advanced Compositional Analysis of Nanoparticle-polymer Composites Using Direct Fluorescence<br>Imaging. Journal of Visualized Experiments, 2016, , .                                                        | 0.3  | 1         |
| 44 | Development and characterisation of a brain tumour mimicking protoporphyrin IX fluorescence phantom (Conference Presentation). , 2017, , .                                                                   |      | 0         |