Denghu Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7099110/publications.pdf

Version: 2024-02-01

430874 477307 42 910 18 29 citations h-index g-index papers 43 43 43 1537 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Nitrogen/oxygen co-doped monolithic carbon electrodes derived from melamine foam for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 17730-17739.	10.3	193
2	Synthesis of Co2SnO4 hollow cubes encapsulated in graphene as high capacity anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 2728.	10.3	68
3	Insight into different-microstructured ZnO/graphene-functionalized separators affecting the performance of lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 4009-4018.	10.3	50
4	Highly Dispersed ZnSe Nanoparticles Embedded in Nâ€Doped Porous Carbon Matrix as an Anode for Potassium Ion Batteries. Particle and Particle Systems Characterization, 2019, 36, 1900199.	2.3	41
5	Formation of Grapheneâ€Wrapped Nanocrystals at Room Temperature through the Colloidal Coagulation Effect. Particle and Particle Systems Characterization, 2013, 30, 143-147.	2.3	39
6	Strongly Coupled W ₂ C Atomic Nanoclusters on N/Pâ€Codoped Graphene for Kinetically Enhanced Sulfur Host. Advanced Materials Interfaces, 2019, 6, 1802088.	3.7	34
7	Hydrothermal synthesis of graphene-MnO2-polyaniline composite and its electrochemical performance. Journal of Materials Science: Materials in Electronics, 2016, 27, 6816-6822.	2.2	30
8	High-performance supercapacitor based on actived carbon–MnO2–polyaniline composite. Journal of Materials Science: Materials in Electronics, 2016, 27, 1357-1362.	2,2	29
9	Novel Fabrication Of N/S Coâ€doped Hierarchically Porous Carbon For Potassiumâ€lon Batteries. ChemistrySelect, 2019, 4, 11488-11495.	1.5	29
10	Multiphase Ge-based Ge/FeGe/FeGe2/C composite anode for high performance lithium ion batteries. Electrochimica Acta, 2017, 253, 522-529.	5. 2	27
11	Low temperature chemical reduction of fusional sodium metasilicate nonahydrate into a honeycomb porous silicon nanostructure. Chemical Communications, 2014, 50, 6856.	4.1	25
12	Electrocatalytic study of a 1,10-phenanthrolineâ€"cobalt(<scp>ii</scp>) metal complex catalyst supported on reduced graphene oxide towards oxygen reduction reaction. RSC Advances, 2016, 6, 33302-33307.	3 . 6	25
13	Fabrication of Stable and Flexible Nanocomposite Membranes Comprised of Cellulose Nanofibers and Graphene Oxide for Nanofluidic Ion Transport. ACS Applied Nano Materials, 2019, 2, 4193-4202.	5.0	25
14	Boosting the potassium-ion storage performance of a carbon anode by chemically regulating oxygen-containing species. Chemical Communications, 2019, 55, 14147-14150.	4.1	24
15	CTAB-reduced synthesis of urchin-like Pt–Cu alloy nanostructures and catalysis study towards the methanol oxidation reaction. RSC Advances, 2015, 5, 94210-94215.	3. 6	23
16	A one-pot thermal decomposition of C 4 H 4 ZnO 6 to ZnO@carbon composite for lithium storage. Journal of Alloys and Compounds, 2017, 714, 13-19.	5.5	19
17	Enhancing electrochemical performance of Fe ₃ O ₄ /graphene hybrid aerogel with hydrophilic polymer. Journal of Applied Polymer Science, 2017, 134, 45566.	2.6	19
18	A hollow neuronal carbon skeleton with ultrahigh pyridinic N content as a self-supporting potassium-ion battery anode. Sustainable Energy and Fuels, 2020, 4, 1216-1224.	4.9	19

#	Article	IF	Citations
19	Dielectric, ferroelectric and piezoelectric properties of Ca0.1Sr0.9Bi2Nb2O9 ceramic. Journal of Materials Science: Materials in Electronics, 2015, 26, 8740-8746.	2.2	18
20	FeS ₂ crystal lattice promotes the nanostructure and enhances the electrocatalytic performance of WS ₂ nanosheets for the oxygen evolution reaction. Dalton Transactions, 2020, 49, 9804-9810.	3.3	17
21	One-pot hydrothermal synthesis of peony-like Ag/Ag _{0.68} V ₂ O ₅ hybrid as high-performance anode and cathode materials for rechargeable lithium batteries. Nanoscale, 2014, 6, 5239-5244.	5.6	15
22	Stable Cycling of Fe ₂ O ₃ Nanorice as an Anode through Electrochemical Porousness and the Solid–Electrolyte Interphase Thermolysis Approach. ChemPlusChem, 2014, 79, 143-150.	2.8	14
23	Earth-abundant Fe _{1â^'x} S@S-doped graphene oxide nanoâ€"micro composites as high-performance cathode catalysts for green solar energy utilization: fast interfacial electron exchange. RSC Advances, 2018, 8, 4340-4347.	3.6	13
24	Synthesis of Manganeseâ€Based Prussian Blue Nanocubes with Organic Solvent as Highâ€Performance Anodes for Lithiumâ€Ion Batteries. European Journal of Inorganic Chemistry, 2019, 2019, 3277-3286.	2.0	13
25	A novel benzene–water azeotrope route to new Na-based metal fluorosulphates NaFeSO4F and NaFeSO4F·2H2O in one minute. CrystEngComm, 2012, 14, 4251.	2.6	11
26	Improving the Performance of Microâ€Silicon Anodes in Lithiumâ€Ion Batteries with a Functional Carbon Nanotube Interlayer. ChemElectroChem, 2018, 5, 3143-3149.	3.4	11
27	One-step thermal decomposition of C4H4FeO6 to Fe3O4@carbon nano-composite for high-performance lithium-ion batteries. Materials Chemistry and Physics, 2020, 239, 122024.	4.0	11
28	Rational design of SnO2 aggregation nanostructure with uniform pores and its supercapacitor application. Journal of Materials Science: Materials in Electronics, 2015, 26, 6143-6147.	2.2	10
29	Mesoporous Fe2O3 nanomaterials from natural rust for lithium storage. Journal of Materials Science: Materials in Electronics, 2017, 28, 19098-19104.	2.2	7
30	Regulating Capacitive Performance of Monolithic Carbon Sponges by Balancing Heteroatom Content, Surface Area and Graphitization Degree. ChemNanoMat, 2020, 6, 1507-1512.	2.8	7
31	Effects of Carbon Content and Current Density on the Li+ Storage Performance for MnO@C Nanocomposite Derived from Mn-Based Complexes. Nanomaterials, 2020, 10, 1629.	4.1	7
32	Self-assembled ZnFe2O4 hollow spheres/GO hybrid anode with excellent electrochemical performance for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2020, 31, 1126-1134.	2.2	6
33	SnO2 Anchored in S and N Co-Doped Carbon as the Anode for Long-Life Lithium-lon Batteries. Nanomaterials, 2022, 12, 700.	4.1	6
34	One-Step Route to Fe2O3 and FeSe2 Nanoparticles Loaded on Carbon-Sheet for Lithium Storage. Molecules, 2022, 27, 2875.	3.8	6
35	Tiny Basic Nickel Carbonate Arrays/Reduced Graphene Oxide Composite for High-Efficiency Supercapacitor Application. Nano, 2019, 14, 1950044.	1.0	5
36	Solid-State Fabrication of Co3V2O8@C Anode Materials with Outstanding Rate Performance and Cycling Stability by Synergistic Effects of Pseudocapacity and Carbon Coating. Journal of Physical Chemistry C, 2022, 126, 903-911.	3.1	5

#	Article	IF	CITATION
37	Influence of orientation on dielectric and ferroelectric properties of the BNT-BT-ST Thin films. Journal of Materials Science: Materials in Electronics, 2018, 29, 20952-20958.	2.2	2
38	Nitrogen-Doped Porous Carbon as Electrode Material for High-Performance Supercapacitors by a Combined Template-Activation Method. Journal of Electronic Materials, 2019, 48, 7888-7896.	2.2	2
39	Synthesis of nitrogen-doped porous carbon and partial poly (2, 2′-dithiodianiline) composite as advanced supercapacitor electrode materials. Journal of Materials Science: Materials in Electronics, 2021, 32, 9332-9344.	2.2	2
40	Tribological properties of carbonized polydopamine/rGO composite coatings. Industrial Lubrication and Tribology, 2019, 72, 54-65.	1.3	1
41	Thermal decomposition followed by acid etching to synthesize Fe3O4@C for lithium storage. Journal of Materials Science: Materials in Electronics, 2019, 30, 91-97.	2.2	1
42	One-pot thermal decomposition of commercial organometallic salt to Fe2O3@C–N and MnO@C–N for lithium storage. Dalton Transactions, 2021, 50, 6867-6877.	3.3	1