Kai Loon Chen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7098681/kai-loon-chen-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

5,006 28 36 37 g-index h-index citations papers 8.2 6.05 5,321 37 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
36	Biofouling Response of Laboratory-Scale Polysulfone Membranes Modified with Bioinspired Polydopamine and Silver Nanoparticles. <i>Environmental Engineering Science</i> , 2019 , 36, 335-343	2	4
35	Adsorption of Human Serum Albumin on Graphene Oxide: Implications for Protein Corona Formation and Conformation. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	22
34	Heteroaggregation of Graphene Oxide with Nanometer- and Micrometer-Sized Hematite Colloids: Influence on Nanohybrid Aggregation and Microparticle Sedimentation. <i>Environmental Science & Enmany; Technology</i> , 2017 , 51, 6821-6828	10.3	49
33	Mechanism of Divalent-Ion-Induced Charge Inversion of Bacterial Membranes. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 2434-8	6.4	15
32	Influence of Solution Chemistry and Soft Protein Coronas on the Interactions of Silver Nanoparticles with Model Biological Membranes. <i>Environmental Science & Environmental S</i>	10.3	30
31	Aggregation and interactions of chemical mechanical planarization nanoparticles with model biological membranes: role of phosphate adsorption. <i>Environmental Science: Nano</i> , 2016 , 3, 146-156	7.1	17
30	Forming mechanism study of unique pillar-like and defect-free PVDF ultrafiltration membranes with high flux. <i>Journal of Membrane Science</i> , 2015 , 487, 1-11	9.6	29
29	Imparting antimicrobial and anti-adhesive properties to polysulfone membranes through modification with silver nanoparticles and polyelectrolyte multilayers. <i>Journal of Colloid and Interface Science</i> , 2015 , 451, 125-33	9.3	15
28	Interactions of Graphene Oxide with Model Cell Membranes: Probing Nanoparticle Attachment and Lipid Bilayer Disruption. <i>Langmuir</i> , 2015 , 31, 12076-86	4	65
27	Physical, chemical, and in vitro toxicological characterization of nanoparticles in chemical mechanical planarization suspensions used in the semiconductor industry: towards environmental health and safety assessments. <i>Environmental Science: Nano</i> , 2015 , 2, 227-244	7.1	46
26	Polysulfone Membranes Modified with Bioinspired Polydopamine and Silver Nanoparticles Formed in Situ To Mitigate Biofouling. <i>Environmental Science and Technology Letters</i> , 2015 , 2, 59-65	11	92
25	Nanoparticles meet cell membranes: probing nonspecific interactions using model membranes. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	158
24	Disaggregation of heteroaggregates composed of multiwalled carbon nanotubes and hematite nanoparticles. <i>Environmental Sciences: Processes and Impacts</i> , 2014 , 16, 1371-8	4.3	10
23	Release kinetics of multiwalled carbon nanotubes deposited on silica surfaces: quartz crystal microbalance with dissipation (QCM-D) measurements and modeling. <i>Environmental Science & Technology</i> , 2014 , 48, 4406-13	10.3	30
22	Heteroaggregation Reduces Antimicrobial Activity of Silver Nanoparticles: Evidence for Nanoparticleffell Proximity Effects. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 361-366	11	51
21	Bacterial anti-adhesive properties of polysulfone membranes modified with polyelectrolyte multilayers. <i>Journal of Membrane Science</i> , 2013 , 446, 201-211	9.6	28
20	Interaction of multiwalled carbon nanotubes with supported lipid bilayers and vesicles as model biological membranes. <i>Environmental Science & Environmental Science & Environ</i>	10.3	58

(2004-2013)

19	Influence of solution chemistry on the release of multiwalled carbon nanotubes from silica surfaces. <i>Environmental Science & Environmental Science & </i>	10.3	36
18	Heteroaggregation of multiwalled carbon nanotubes and hematite nanoparticles: rates and mechanisms. <i>Environmental Science & Environmental & E</i>	10.3	103
17	Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. <i>Environmental Science & Environmental </i>	10.3	512
16	Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. <i>Environmental Science & Environmental Env</i>	10.3	406
15	Influence of surface oxidation on the aggregation and deposition kinetics of multiwalled carbon nanotubes in monovalent and divalent electrolytes. <i>Langmuir</i> , 2011 , 27, 3588-99	4	110
14	Fouling and cleaning of RO membranes fouled by mixtures of organic foulants simulating wastewater effluent. <i>Journal of Membrane Science</i> , 2011 , 376, 196-206	9.6	190
13	Adsorption kinetics and reversibility of linear plasmid DNA on silica surfaces: influence of alkaline earth and transition metal ions. <i>Biomacromolecules</i> , 2010 , 11, 1225-30	6.9	27
12	Assessing the colloidal properties of engineered nanoparticles in water: case studies from fullerene C60 nanoparticles and carbon nanotubes. <i>Environmental Chemistry</i> , 2010 , 7, 10	3.2	124
11	Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties. <i>Environmental Science & Environmental Science & Environme</i>	10.3	158
10	Interaction of fullerene (C60) nanoparticles with humic acid and alginate coated silica surfaces: measurements, mechanisms, and environmental implications. <i>Environmental Science & Environmental Environment</i>	10.3	251
9	Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. <i>Journal of Colloid and Interface Science</i> , 2008 , 324, 71-9	9.3	304
8	Role of divalent cations in plasmid DNA adsorption to natural organic matter-coated silica surface. <i>Environmental Science & Emp; Technology</i> , 2007 , 41, 5370-5	10.3	71
7	Enhanced aggregation of alginate-coated iron oxide (hematite) nanoparticles in the presence of calcium, strontium, and barium cations. <i>Langmuir</i> , 2007 , 23, 5920-8	4	217
6	Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. <i>Journal of Colloid and Interface Science</i> , 2007 , 309, 126-34	9.3	530
5	Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. <i>Environmental Science & Environmental Science</i>	10.3	380
4	Aggregation and deposition kinetics of fullerene (C60) nanoparticles. <i>Langmuir</i> , 2006 , 22, 10994-1001	4	574
3	Influence of natural organic matter and ionic composition on the kinetics and structure of hematite colloid aggregation: implications to iron depletion in estuaries. <i>Langmuir</i> , 2004 , 20, 9000-6	4	197
2	A new normalization method for determination of colloidal fouling potential in membrane processes. <i>Journal of Colloid and Interface Science</i> , 2004 , 271, 426-33	9.3	31

The development of membrane fouling in full-scale RO processes. *Journal of Membrane Science*, **2004**, 232, 63-72

9.6 65