
Liliana C Tomé

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7098364/publications.pdf Version: 2024-02-01

LILIANA C TOMÃO

#	Article	IF	CITATIONS
1	Processing of poly(ionic liquid)–ionic liquid membranes using femtosecond (fs) laser radiation: Effect on CO2 separation performance. Journal of Membrane Science, 2022, 642, 119903.	4.1	4
2	lonic liquid/poly(ionic liquid) membranes as non-flowing, conductive materials for electrochemical gas sensing. Analytica Chimica Acta, 2022, 1195, 339414.	2.6	6
3	Overview of Membrane Science and Technology in Portugal. Membranes, 2022, 12, 197.	1.4	2
4	Mixed-Matrix Ion Gel Membranes for Gas Separation. ACS Applied Polymer Materials, 2022, 4, 3098-3119.	2.0	10
5	Gelatin and Tannic Acid Based longels for Muscle Activity Recording and Stimulation Electrodes. ACS Biomaterials Science and Engineering, 2022, 8, 2598-2609.	2.6	12
6	Natural Deep Eutectic Solvents Based on Choline Chloride and Phenolic Compounds as Efficient Bioadhesives and Corrosion Protectors. ACS Sustainable Chemistry and Engineering, 2022, 10, 8135-8142.	3.2	27
7	CO2/H2 separation through poly(ionic liquid)–ionic liquid membranes: The effect of multicomponent gas mixtures, temperature and gas feed pressure. Separation and Purification Technology, 2021, 259, 118113.	3.9	38
8	Reducing Passive Drug Diffusion from Electrophoretic Drug Delivery Devices through Coâ€lon Engineering. Advanced Science, 2021, 8, 2003995.	5.6	6
9	Conducting Polymerâ€lonic Liquid Electrode Arrays for Highâ€Density Surface Electromyography. Advanced Healthcare Materials, 2021, 10, e2100374.	3.9	29
10	3D Printable and Biocompatible longels for Body Sensor Applications. Advanced Electronic Materials, 2021, 7, 2100178.	2.6	30
11	lonic liquid-based semi-interpenetrating polymer network (sIPN) membranes for CO2 separation. Separation and Purification Technology, 2021, 274, 118437.	3.9	11
12	Emerging Ionic Polymers for CO. Australian Journal of Chemistry, 2021, 74, 767-777.	0.5	11
13	Emerging iongel materials towards applications in energy and bioelectronics. Materials Horizons, 2021, 8, 3239-3265.	6.4	25
14	Poly(ethylene glycol) Diacrylate longel Membranes Reinforced with Nanoclays for CO2 Separation. Membranes, 2021, 11, 998.	1.4	2
15	Impact of MOF-5 on Pyrrolidinium-Based Poly(ionic liquid)/Ionic Liquid Membranes for Biogas Upgrading. Industrial & Engineering Chemistry Research, 2020, 59, 308-317.	1.8	29
16	Emerging Ionic Soft Materials Based on Deep Eutectic Solvents. Journal of Physical Chemistry B, 2020, 124, 8465-8478.	1.2	106
17	Influence of Anion Structure on Thermal, Mechanical and CO2 Solubility Properties of UV-Cross-Linked Poly(ethylene glycol) Diacrylate longels. Membranes, 2020, 10, 46.	1.4	12
18	Tailored CO ₂ -Philic Anionic Poly(ionic liquid) Composite Membranes: Synthesis, Characterization, and Gas Transport Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 5954-5965.	3.2	35

LILIANA C TOMé

#	Article	IF	CITATIONS
19	Elastic and Thermoreversible longels by Supramolecular PVA/Phenol Interactions. Macromolecular Bioscience, 2020, 20, e2000119.	2.1	11
20	Poly(ionic liquid)–Ionic Liquid Membranes with Fluorosulfonyl-Derived Anions: Characterization and Biohydrogen Separation. ACS Sustainable Chemistry and Engineering, 2020, 8, 7087-7096.	3.2	21
21	Poly(ionic liquid)-based engineered mixed matrix membranes for CO2/H2 separation. Separation and Purification Technology, 2019, 222, 168-176.	3.9	53
22	Imidazolium-Based Copoly(Ionic Liquid) Membranes for CO ₂ /N ₂ Separation. Industrial & Engineering Chemistry Research, 2019, 58, 2017-2026.	1.8	34
23	Mixing poly(ionic liquid)s and ionic liquids with different cyano anions: Membrane forming ability and CO 2 /N 2 separation properties. Journal of Membrane Science, 2018, 552, 341-348.	4.1	49
24	Effect of polymer molecular weight on the physical properties and CO2/N2 separation of pyrrolidinium-based poly(ionic liquid) membranes. Journal of Membrane Science, 2018, 549, 267-274.	4.1	51
25	Towards Biohydrogen Separation Using Poly(Ionic Liquid)/Ionic Liquid Composite Membranes. Membranes, 2018, 8, 124.	1.4	22
26	Study on Gas Permeation and CO ₂ Separation through Ionic Liquid-Based Membranes with Siloxane-Functionalized Cations. Industrial & Engineering Chemistry Research, 2017, 56, 2229-2239.	1.8	23
27	Aqueous Biphasic Systems of Pyrrolidinium Ionic Liquids with Organic Acid-Derived Anions and K ₃ PO ₄ . Journal of Chemical & Engineering Data, 2017, 62, 1182-1188.	1.0	7
28	Exploring the effect of fluorinated anions on the CO ₂ /N ₂ separation of supported ionic liquid membranes. Physical Chemistry Chemical Physics, 2017, 19, 28876-28884.	1.3	25
29	lonic liquids with anions based on fluorosulfonyl derivatives: from asymmetrical substitutions to a consistent force field model. Physical Chemistry Chemical Physics, 2017, 19, 29617-29624.	1.3	49
30	Expanding the Applicability of Poly(Ionic Liquids) in Solid Phase Microextraction: Pyrrolidinium Coatings. Materials, 2017, 10, 1094.	1.3	13
31	New Low-Toxicity Cholinium-Based Ionic Liquids with Perfluoroalkanoate Anions for Aqueous Biphasic System Implementation. ACS Sustainable Chemistry and Engineering, 2016, 4, 2670-2679.	3.2	61
32	Thermodynamic Study of Aggregation of Cholinium Perfluoroalkanoate Ionic Liquids. Journal of Chemical & Engineering Data, 2016, 61, 3979-3988.	1.0	12
33	Towards the potential of cyano and amino acid-based ionic liquid mixtures for facilitated CO2 transport membranes. Journal of Membrane Science, 2016, 510, 174-181.	4.1	28
34	lonic liquid-based materials: a platform to design engineered CO ₂ separation membranes. Chemical Society Reviews, 2016, 45, 2785-2824.	18.7	347
35	Turning into poly(ionic liquid)s as a tool for polyimide modification: synthesis, characterization and CO ₂ separation properties. Polymer Chemistry, 2016, 7, 580-591.	1.9	81
36	Density, Viscosity, and Refractive Index of Ionic Liquid Mixtures Containing Cyano and Amino Acid-Based Anions. Journal of Chemical & Engineering Data, 2016, 61, 83-93.	1.0	62

LILIANA C TOMé

#	Article	IF	CITATIONS
37	The role of water in cholinium carboxylate ionic liquid's aqueous solutions. Journal of Chemical Thermodynamics, 2015, 84, 93-100.	1.0	22
38	Bioactive transparent films based on polysaccharides and cholinium carboxylate ionic liquids. Green Chemistry, 2015, 17, 4291-4299.	4.6	43
39	Polymeric ionic liquid-based membranes: Influence of polycation variation on gas transport and CO2 selectivity properties. Journal of Membrane Science, 2015, 486, 40-48.	4.1	92
40	Novel pyrrolidinium-based polymeric ionic liquids with cyano counter-anions: High performance membrane materials for post-combustion CO2 separation. Journal of Membrane Science, 2015, 483, 155-165.	4.1	92
41	Poly(ionic liquid)s as phase splitting promoters in aqueous biphasic systems. Physical Chemistry Chemical Physics, 2015, 17, 27462-27472.	1.3	10
42	Poly(ionic liquid)s: Designing CO2 Separation Membranes. , 2015, , 267-295.		1
43	Cholinium Lactate Methacrylate: Ionic Liquid Monomer for Cellulose Composites and Biocompatible Ion Gels. Macromolecular Symposia, 2014, 342, 21-24.	0.4	11
44	Choliniumâ€based Supported Ionic Liquid Membranes: A Sustainable Route for Carbon Dioxide Separation. ChemSusChem, 2014, 7, 110-113.	3.6	71
45	Playing with ionic liquid mixtures to design engineered CO ₂ separation membranes. Physical Chemistry Chemical Physics, 2014, 16, 17172.	1.3	70
46	Polymeric ionic liquid membranes containing IL–Ag+ for ethylene/ethane separation via olefin-facilitated transport. Journal of Materials Chemistry A, 2014, 2, 5631.	5.2	74
47	Understanding the Role of Cholinium Carboxylate Ionic Liquids in PEG-Based Aqueous Biphasic Systems. ACS Sustainable Chemistry and Engineering, 2014, 2, 2426-2434.	3.2	60
48	Pyrrolidinium-based polymeric ionic liquid materials: New perspectives for CO2 separation membranes. Journal of Membrane Science, 2013, 428, 260-266.	4.1	156
49	CO2 separation applying ionic liquid mixtures: the effect of mixing different anions on gas permeation through supported ionic liquid membranes. RSC Advances, 2013, 3, 12220.	1.7	88
50	Polymeric ionic liquids with mixtures of counter-anions: a new straightforward strategy for designing pyrrolidinium-based CO2 separation membranes. Journal of Materials Chemistry A, 2013, 1, 10403.	5.2	69
51	Effect of natural and synthetic antioxidants incorporation on the gas permeation properties of poly(lactic acid) films. Journal of Food Engineering, 2013, 116, 562-571.	2.7	33
52	Aqueous biphasic systems: a benign route using cholinium-based ionic liquids. RSC Advances, 2013, 3, 1835-1843.	1.7	138
53	Cholinium-Based Poly(ionic liquid)s: Synthesis, Characterization, and Application as Biocompatible Ion Gels and Cellulose Coatings. ACS Macro Letters, 2013, 2, 975-979.	2.3	75
54	Gas Permeation Properties of Fluorinated Ionic Liquids. Industrial & Engineering Chemistry Research, 2013, 52, 4994-5001.	1.8	54

LILIANA C TOMé

#	Article	IF	CITATIONS
55	The role of nanocellulose fibers, starch and chitosan on multipolysaccharide based films. Cellulose, 2013, 20, 1807-1818.	2.4	57
56	New CO2 Separation Membranes based on Pyrrolidinium Ionic Materials. Procedia Engineering, 2012, 44, 1583-1584.	1.2	0
57	Phosphonium-based ionic liquids as modifiers for biomedical grade poly(vinyl chloride). Acta Biomaterialia, 2012, 8, 1366-1379.	4.1	62
58	Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly(lactic acid) through a simple approach. Green Chemistry, 2011, 13, 419.	4.6	126
59	Surface hydrophobization of bacterial and vegetable cellulose fibers using ionic liquids as solvent media and catalysts. Green Chemistry, 2011, 13, 2464.	4.6	71
60	Addition of αâ€ŧocopherol on poly(lactic acid): Thermal, mechanical, and sorption properties. Journal of Applied Polymer Science, 2011, 119, 2468-2475.	1.3	19
61	Preparation and evaluation of the barrier properties of cellophane membranes modified with fatty acids. Carbohydrate Polymers, 2011, 83, 836-842.	5.1	40
62	Preparation and characterization of bacterial cellulose membranes with tailored surface and barrier properties. Cellulose, 2010, 17, 1203-1211.	2.4	87
63	Protonation Equilibria and Lipophilicity of Sarafloxacin. Journal of Chemical & Engineering Data, 2010, 55, 3160-3163.	1.0	7