
Nam-Chon Paek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7098173/publications.pdf Version: 2024-02-01

NAM-CHON DAEK

#	Article	IF	CITATIONS
1	The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant Journal, 2003, 35, 613-623.	2.8	510
2	The Senescence-Induced Staygreen Protein Regulates Chlorophyll Degradation. Plant Cell, 2007, 19, 1649-1664.	3.1	475
3	Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nature Communications, 2014, 5, 4636.	5.8	375
4	COP1 and ELF3 Control Circadian Function and Photoperiodic Flowering by Regulating GI Stability. Molecular Cell, 2008, 32, 617-630.	4.5	330
5	Natural Variation in OsPRR37 Regulates Heading Date and Contributes to Rice Cultivation at a Wide Range of Latitudes. Molecular Plant, 2013, 6, 1877-1888.	3.9	298
6	STAY-GREEN and Chlorophyll Catabolic Enzymes Interact at Light-Harvesting Complex II for Chlorophyll Detoxification during Leaf Senescence in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 507-518.	3.1	290
7	Rice Chlorina-1 and Chlorina-9 encode ChlD and Chll subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Molecular Biology, 2006, 62, 325-337.	2.0	246
8	The Arabidopsis Transcription Factor NAC016 Promotes Drought Stress Responses by Repressing <i>AREB1</i> Transcription through a Trifurcate Feed-Forward Regulatory Loop Involving NAP. Plant Cell, 2015, 27, 1771-1787.	3.1	214
9	Rice <i>Virescent3</i> and <i>Stripe1</i> Encoding the Large and Small Subunits of Ribonucleotide Reductase Are Required for Chloroplast Biogenesis during Early Leaf Development Â. Plant Physiology, 2009, 150, 388-401.	2.3	201
10	The rice <i>narrow leaf2</i> and <i>narrow leaf3</i> loci encode <scp>WUSCHEL</scp> â€related homeobox 3 <scp>A</scp> (<scp>O</scp> s <scp>WOX</scp> 3 <scp>A</scp>) and function in leaf, spikelet, tiller and lateral root development. New Phytologist, 2013, 198, 1071-1084.	3.5	174
11	<i>Os<scp>ASR</scp>5</i> enhances drought tolerance through a stomatal closure pathway associated with <scp>ABA</scp> and H ₂ O ₂ signalling in rice. Plant Biotechnology Journal, 2017, 15, 183-196.	4.1	174
12	<i>SPL28</i> encodes a clathrinâ€associated adaptor protein complex 1, medium subunit μ1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (<i>Oryza sativa</i>). New Phytologist, 2010, 185, 258-274.	3.5	162
13	The rice <i>faded green leaf</i> locus encodes protochlorophyllide oxidoreductaseÂB and is essential for chlorophyll synthesis under high light conditions. Plant Journal, 2013, 74, 122-133.	2.8	153
14	Mutation of the Arabidopsis NAC016 Transcription Factor Delays Leaf Senescence. Plant and Cell Physiology, 2013, 54, 1660-1672.	1.5	147
15	Rice ONAC106 Inhibits Leaf Senescence and Increases Salt Tolerance and Tiller Angle. Plant and Cell Physiology, 2015, 56, 2325-2339.	1.5	131
16	AtMYB21, a gene encoding a flower-specific transcription factor, is regulated by COP1. Plant Journal, 2002, 30, 23-32.	2.8	118
17	Arabidopsis STAY-GREEN2 Is a Negative Regulator of Chlorophyll Degradation during Leaf Senescence. Molecular Plant, 2014, 7, 1288-1302.	3.9	110
18	Mutation of <i>Oryza sativa CORONATINE INSENSITIVE 1b</i> (<i>OsCOI1b</i>) delays leaf senescence. Journal of Integrative Plant Biology, 2015, 57, 562-576.	4.1	105

#	Article	IF	CITATIONS
19	The rice zebra3 (z3) mutation disrupts citrate distribution and produces transverse dark-green/green variegation in mature leaves. Rice, 2018, 11, 1.	1.7	87
20	The Divergent Roles of STAYGREEN (SGR) Homologs in Chlorophyll Degradation. Molecules and Cells, 2015, 38, 390-395.	1.0	77
21	Arabidopsis <i><scp>EARLY FLOWERING</scp>3</i> increases salt tolerance by suppressing salt stress response pathways. Plant Journal, 2017, 92, 1106-1120.	2.8	73
22	Arabidopsis NAC016 promotes chlorophyll breakdown by directly upregulating STAYGREEN1 transcription. Plant Cell Reports, 2016, 35, 155-166.	2.8	72
23	Mutation of <i>SPOTTED LEAF3</i> (<i>SPL3</i>) impairs abscisic acid-responsive signalling and delays leaf senescence in rice. Journal of Experimental Botany, 2015, 66, 7045-7059.	2.4	70
24	Delayed degradation of chlorophylls and photosynthetic proteins in Arabidopsis autophagy mutants during stress-induced leaf yellowing. Journal of Experimental Botany, 2014, 65, 3915-3925.	2.4	69
25	ZEBRA-NECROSIS, a thylakoid-bound protein, is critical for the photoprotection of developing chloroplasts during early leaf development. Plant Journal, 2010, 62, 713-725.	2.8	67
26	<i>Arabidopsis</i> STAYGREENâ€LIKE (SGRL) promotes abiotic stressâ€induced leaf yellowing during vegetative growth. FEBS Letters, 2014, 588, 3830-3837.	1.3	66
27	Multilayered Regulation of Membrane-Bound ONAC054 Is Essential for Abscisic Acid-Induced Leaf Senescence in Rice. Plant Cell, 2020, 32, 630-649.	3.1	66
28	7-Hydroxymethyl chlorophyll a reductase functions in metabolic channeling of chlorophyll breakdown intermediates during leaf senescence. Biochemical and Biophysical Research Communications, 2013, 430, 32-37.	1.0	62
29	Inactivating transcription factor <i>OsWRKY5</i> enhances drought tolerance through abscisic acid signaling pathways. Plant Physiology, 2022, 188, 1900-1916.	2.3	62
30	Rice transcription factor OsMYB102 delays leaf senescence by down-regulating abscisic acid accumulation and signaling. Journal of Experimental Botany, 2019, 70, 2699-2715.	2.4	61
31	The F-box protein FKF1 inhibits dimerization of COP1 in the control of photoperiodic flowering. Nature Communications, 2017, 8, 2259.	5.8	60
32	Overexpression of Rice Expansin7 (Osexpa7) Confers Enhanced Tolerance to Salt Stress in Rice. International Journal of Molecular Sciences, 2020, 21, 454.	1.8	59
33	OsWOX3A is involved in negative feedback regulation of the gibberellic acid biosynthetic pathway in rice (<i>Oryza sativa</i>). Journal of Experimental Botany, 2016, 67, 1677-1687.	2.4	58
34	Two NADPH: Protochlorophyllide Oxidoreductase (POR) Isoforms Play Distinct Roles in Environmental Adaptation in Rice. Rice, 2017, 10, 1.	1.7	52
35	Quantitative trait loci associated with functional stay-green SNU-SG1 in rice. Molecules and Cells, 2007, 24, 83-94.	1.0	51
36	Quantitative Trait Locus Mapping and Candidate Gene Analysis for Plant Architecture Traits Using Whole Genome Re-Sequencing in Rice. Molecules and Cells, 2014, 37, 149-160.	1.0	50

#	Article	IF	CITATIONS
37	Natural variation in <scp><i>E</i></scp> <i>arly flowering1</i> contributes to early flowering in <i>japonica</i> rice under long days. Plant, Cell and Environment, 2014, 37, 101-112.	2.8	46
38	Rice <scp>FLAVINâ€BINDING</scp> , <scp>KELCH REPEAT</scp> , <scp>F</scp> â€ <scp>BOX</scp> 1 (<scp>OsFKF</scp> 1) promotes flowering independent of photoperiod. Plant, Cell and Environment, 2015, 38, 2527-2540.	2.8	46
39	Gibberellic Acid: A Key Phytohormone for Spikelet Fertility in Rice Grain Production. International Journal of Molecular Sciences, 2016, 17, 794.	1.8	45
40	The MYB-related transcription factor RADIALIS-LIKE3 (OsRL3) functions in ABA-induced leaf senescence and salt sensitivity in rice. Environmental and Experimental Botany, 2018, 156, 86-95.	2.0	44
41	Leaf Variegation in the Rice zebra2 Mutant Is Caused by Photoperiodic Accumulation of Tetra-Cis-Lycopene and Singlet Oxygen. Molecules and Cells, 2012, 33, 87-98.	1.0	43
42	GIGANTEA Shapes the Photoperiodic Rhythms of Thermomorphogenic Growth in Arabidopsis. Molecular Plant, 2020, 13, 459-470.	3.9	43
43	The E3 Ubiquitin Ligase COP1 Regulates Thermosensory Flowering by Triggering GI Degradation in Arabidopsis. Scientific Reports, 2015, 5, 12071.	1.6	39
44	Rice ETHYLENE RESPONSE FACTOR 101 Promotes Leaf Senescence Through Jasmonic Acid-Mediated Regulation of OsNAP and OsMYC2. Frontiers in Plant Science, 2020, 11, 1096.	1.7	39
45	Rice NARROW LEAF1 Regulates Leaf and Adventitious Root Development. Plant Molecular Biology Reporter, 2014, 32, 270-281.	1.0	38
46	Rice Phytochrome-Interacting Factor-Like1 (OsPIL1) is involved in the promotion of chlorophyll biosynthesis through feed-forward regulatory loops. Journal of Experimental Botany, 2017, 68, 4103-4114.	2.4	36
47	Rice WUSCHEL-related homeobox 3A (OsWOX3A) modulates auxin-transport gene expression in lateral root and root hair development. Plant Signaling and Behavior, 2013, 8, e25929.	1.2	32
48	The Rice Floral Repressor Early flowering1 Affects Spikelet Fertility By Modulating Gibberellin Signaling. Rice, 2015, 8, 58.	1.7	30
49	Rice Phytochrome B (OsPhyB) Negatively Regulates Dark- and Starvation-Induced Leaf Senescence. Plants, 2015, 4, 644-663.	1.6	30
50	Mutation of ONAC096 Enhances Grain Yield by Increasing Panicle Number and Delaying Leaf Senescence during Grain Filling in Rice. International Journal of Molecular Sciences, 2019, 20, 5241.	1.8	30
51	OsWRKY5 Promotes Rice Leaf Senescence via Senescence-Associated NAC and Abscisic Acid Biosynthesis Pathway. International Journal of Molecular Sciences, 2019, 20, 4437.	1.8	30
52	Casein Kinases I and 2α Phosphorylate Oryza Sativa Pseudo-Response Regulator 37 (OsPRR37) in Photoperiodic Flowering in Rice. Molecules and Cells, 2015, 38, 81-88.	1.0	29
53	Rice DNA-Binding One Zinc Finger 24 (OsDOF24) Delays Leaf Senescence in a Jasmonate-Mediated Pathway. Plant and Cell Physiology, 2019, 60, 2065-2076.	1.5	28
54	Post-translational regulation of FLC is mediated by an E3 ubiquitin ligase activity of SINAT5 in Arabidopsis. Plant Science, 2007, 173, 269-275.	1.7	26

#	Article	IF	CITATIONS
55	Mutation of Rice Early Flowering3.1 (OsELF3.1) delays leaf senescence in rice. Plant Molecular Biology, 2016, 92, 223-234.	2.0	25
56	The rice bright green leaf (bgl) locus encodes OsRopGEF10, which activates the development of small cuticular papillae on leaf surfaces. Plant Molecular Biology, 2011, 77, 631-641.	2.0	20
57	The Rice Rolled Fine Striped (RFS) CHD3/Mi-2 Chromatin Remodeling Factor Epigenetically Regulates Genes Involved in Oxidative Stress Responses During Leaf Development. Frontiers in Plant Science, 2018, 9, 364.	1.7	20
58	Rice 7-Hydroxymethyl Chlorophyll a Reductase Is Involved in the Promotion of Chlorophyll Degradation and Modulates Cell Death Signaling. Molecules and Cells, 2017, 40, 773-786.	1.0	19
59	The Rice SPOTTED LEAF4 (SPL4) Encodes a Plant Spastin That Inhibits ROS Accumulation in Leaf Development and Functions in Leaf Senescence. Frontiers in Plant Science, 2018, 9, 1925.	1.7	19
60	Transgenic expression of rice <i>MYB102</i> (<i>OsMYB102</i>) delays leaf senescence and decreases abiotic stress tolerance in <i>Arabidopsis thaliana</i> . BMB Reports, 2019, 52, 653-658.	1.1	19
61	The Rice Basic Helix–Loop–Helix 79 (OsbHLH079) Determines Leaf Angle and Grain Shape. International Journal of Molecular Sciences, 2020, 21, 2090.	1.8	16
62	Negative regulatory roles of DE-ETIOLATED1 in flowering time inArabidopsis. Scientific Reports, 2015, 5, 9728.	1.6	15
63	Functional deficiency of phytochrome B improves salt tolerance in rice. Environmental and Experimental Botany, 2018, 148, 100-108.	2.0	15
64	Expression of hpa1 Gene Encoding a Bacterial Harpin Protein in Xanthomonas oryzae pv. oryzae Enhances Disease Resistance to Both Fungal and Bacterial Pathogens in Rice and Arabidopsis. Plant Pathology Journal, 2012, 28, 364-372.	0.7	14
65	The AP2/ERF transcription factor LATE FLOWERING SEMIâ€DWARF suppresses longâ€dayâ€dependent repression of flowering. Plant, Cell and Environment, 2022, 45, 2446-2459.	2.8	14
66	Photoblastism and Ecophysiology of Seed Germination in Weedy Rice. Agronomy Journal, 2003, 95, 184-190.	0.9	13
67	Roles of rice PHYTOCHROME-INTERACTING FACTOR-LIKE1 (OsPIL1) in leaf senescence. Plant Signaling and Behavior, 2017, 12, e1362522.	1.2	12
68	Natural alleles of <i>CIRCADIAN CLOCK ASSOCIATED1</i> contribute to rice cultivation by fine-tuning flowering time. Plant Physiology, 2022, 190, 640-656.	2.3	12
69	Genome-Wide Analysis of Genes Induced by Fusarium graminearum Infection in Resistant and Susceptible Wheat Cultivars. Journal of Plant Biology, 2012, 55, 64-72.	0.9	11
70	Salt Treatments and Induction of Senescence. Methods in Molecular Biology, 2018, 1744, 141-149.	0.4	11
71	Chlorophyll Degradation and Light-harvesting Complex II Aggregate Formation During Dark-induced Leaf Senescence in Arabidopsis Pheophytinase Mutants. Journal of Plant Biology, 2019, 62, 27-38.	0.9	11
72	Characterization and genetic analysis of a low-temperature-sensitive mutant, sy-2, in Capsicum chinense. Theoretical and Applied Genetics, 2011, 122, 459-470.	1.8	9

#	Article	IF	CITATIONS
73	Regulatory role of the OsWOX3A transcription factor in rice root development. Plant Signaling and Behavior, 2016, 11, e1184807.	1.2	7
74	Light-dependent suppression of COP1 multimeric complex formation is determined by the blue-light receptor FKF1 in Arabidopsis. Biochemical and Biophysical Research Communications, 2019, 508, 191-197.	1.0	6
75	The serine proteinase inhibitor OsSerpin is a potent tillering regulator in rice. Journal of Plant Biology, 2007, 50, 600-604.	0.9	5
76	Photoperiod sensing system for timing of flowering in plants. BMB Reports, 2018, 51, 163-164.	1.1	5
77	CONSTITUTIVE PHOTOMORPHOGENIC 1 promotes seed germination by destabilizing RGA-LIKE 2 in Arabidopsis. Plant Physiology, 2022, 189, 1662-1676.	2.3	5
78	CONSTITUTIVE PHOTOMORPHOGENIC 10 (COP10) Contributes to Floral Repression under Non-Inductive Short Days in Arabidopsis. International Journal of Molecular Sciences, 2015, 16, 26493-26505.	1.8	3
79	Editorial: Regulatory Mechanisms of Leaf Senescence Under Environmental Stresses. Frontiers in Plant Science, 2020, 11, 1293.	1.7	3
80	Histone Deacetylases in Rice Development and Stress Responses. Journal of Plant Biology, 2022, 65, 175-185.	0.9	3
81	The Rice CHD3/Mi-2 Chromatin Remodeling Factor Rolled Fine Striped Promotes Flowering Independent of Photoperiod. International Journal of Molecular Sciences, 2021, 22, 1303.	1.8	1
82	Antisense expression of a staygreen gene (SGR) delays leaf senescence in creeping bentgrass. Rapid Communication in Photoscience, 2014, 3, 28-31.	0.1	1
83	Editorial: Signaling Events in Regulating Leaf Senescence. Frontiers in Plant Science, 2022, 13, 860923.	1.7	Ο