Claudio V Mello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7097994/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Divergent low-density lipoprotein receptor (LDLR) linked to low VSV G-dependent viral infectivity and unique serum lipid profile in zebra finches. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	6
2	Towards complete and error-free genome assemblies of all vertebrate species. Nature, 2021, 592, 737-746.	13.7	1,139
3	Natural loss of function of ephrin-B3 shapes spinal flight circuitry in birds. Science Advances, 2021, 7, .	4.7	7
4	Behavioral Biology of the Zebra Finch. , 2021, , 315-329.		0
5	Resurgent Na+ currents promote ultrafast spiking in projection neurons that drive fine motor control. Nature Communications, 2021, 12, 6762.	5.8	18
6	Dense sampling of bird diversity increases power of comparative genomics. Nature, 2020, 587, 252-257.	13.7	251
7	Molecular specializations of deep cortical layer analogs in songbirds. Scientific Reports, 2020, 10, 18767.	1.6	17
8	ZEBrA: Zebra finch Expression Brain Atlas—A resource for comparative molecular neuroanatomy and brain evolution studies. Journal of Comparative Neurology, 2020, 528, 2099-2131.	0.9	30
9	Exploring the molecular basis of neuronal excitability in a vocal learner. BMC Genomics, 2019, 20, 629.	1.2	12
10	Identification and characterization of primordial germ cells in a vocal learning Neoaves species, the zebra finch. FASEB Journal, 2019, 33, 13825-13836.	0.2	26
11	A Modular Approach to Vocal Learning: Disentangling the Diversity of a Complex Behavioral Trait. Neuron, 2019, 104, 87-99.	3.8	47
12	Urotensin-related gene transcripts mark developmental emergence of the male forebrain vocal control system in songbirds. Scientific Reports, 2019, 9, 816.	1.6	5
13	Seasonal changes in the song control nuclei of the Rufousâ€bellied Thrush, Turdus rufiventris (Oscine,) Tj ETQq1 ∷ Evolution, 2019, 332, 92-98.	1 0.78431 0.6	4 rgBT /Ove 0
14	Molecular architecture of the zebra finch arcopallium. Journal of Comparative Neurology, 2019, 527, 2512-2556.	0.9	42
15	Hippocampal functional organization: A microstructure of the place cell network encoding space. Neurobiology of Learning and Memory, 2019, 161, 122-134.	1.0	9
16	Black Jacobin hummingbirds vocalize above the known hearing range of birds. Current Biology, 2018, 28, R204-R205.	1.8	12
17	The constitutive differential transcriptome of a brain circuit for vocal learning. BMC Genomics, 2018, 19, 231.	1.2	25
18	Avian genomics lends insights into endocrine function in birds. General and Comparative Endocrinology, 2018, 256, 123-129.	0.8	7

#	Article	IF	CITATIONS
19	Parrot Genomes and the Evolution of Heightened Longevity and Cognition. Current Biology, 2018, 28, 4001-4008.e7.	1.8	52
20	Comparative mitogenomic analyses of Amazona parrots and Psittaciformes. Genetics and Molecular Biology, 2018, 41, 593-604.	0.6	5
21	Discovery of Novel Genes and Other Lineage-Specific Features Through Comparative Genomics. , 2018, , 225-241.		2
22	Curation of microarray oligonucleotides and corresponding ESTs/cDNAs used for gene expression analysis in zebra finches. BMC Research Notes, 2018, 11, 309.	0.6	4
23	The assembly and annotation of the complete Rufous-bellied thrush mitochondrial genome. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2017, 28, 231-232.	0.7	4
24	A New Chicken Genome Assembly Provides Insight into Avian Genome Structure. G3: Genes, Genomes, Genetics, 2017, 7, 109-117.	0.8	228
25	Correspondence on Lovell et al.: response to Bornelöv et al Genome Biology, 2017, 18, 113.	3.8	4
26	Living without DAT: Loss and compensation of the dopamine transporter gene in sauropsids (birds and) Tj ETQq	10 0 0 rgBT	· /Oyerlock 10
27	Response to Hron et al Genome Biology, 2015, 16, 165.	3.8	10
28	Control of Phasic Firing by a Background Leak Current in Avian Forebrain Auditory Neurons. Frontiers in Cellular Neuroscience, 2015, 9, 471.	1.8	24
29	A putative RA-like region in the brain of the scale-backed antbird, Willisornis poecilinotus (Furnariides, Suboscines, Passeriformes, Thamnophilidae). Genetics and Molecular Biology, 2015, 38, 249-254.	0.6	16
30	Dynamic gene expression in the song system of zebra finches during the song learning period. Developmental Neurobiology, 2015, 75, 1315-1338.	1.5	21
31	The opportunities and challenges of large-scale molecular approaches to songbird neurobiology. Neuroscience and Biobehavioral Reviews, 2015, 50, 70-76.	2.9	16
32	Drinking Songs: Alcohol Effects on Learned Song of Zebra Finches. PLoS ONE, 2014, 9, e115427.	1.1	16
33	Conserved syntenic clusters of protein coding genes are missing in birds. Genome Biology, 2014, 15, 565.	3.8	123
34	The Zebra Finch, <i>Taeniopygia guttata</i> : An Avian Model for Investigating the Neurobiological Basis of Vocal Learning. Cold Spring Harbor Protocols, 2014, 2014, pdb.emo084574.	0.2	30
35	An Optimized Protocol for High-Throughput In Situ Hybridization of Zebra Finch Brain. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot084582.	0.2	24
36	Proper Care, Husbandry, and Breeding Guidelines for the Zebra Finch, <i>Taeniopygia guttata</i> . Cold Spring Harbor Protocols, 2014, 2014, pdb.prot084780.	0.2	14

#	Article	IF	CITATIONS
37	Convergent transcriptional specializations in the brains of humans and song-learning birds. Science, 2014, 346, 1256846.	6.0	379
38	Whole-genome analyses resolve early branches in the tree of life of modern birds. Science, 2014, 346, 1320-1331.	6.0	1,583
39	Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 2014, 346, 1311-1320.	6.0	895
40	Comparative genomics reveals molecular features unique to the songbird lineage. BMC Genomics, 2014, 15, 1082.	1.2	32
41	Long-Distance Retinoid Signaling in the Zebra Finch Brain. PLoS ONE, 2014, 9, e111722.	1.1	9
42	Genomics analysis of potassium channel genes in songbirds reveals molecular specializations of brain circuits for the maintenance and production of learned vocalizations. BMC Genomics, 2013, 14, 470.	1.2	31
43	Digital atlas of the zebra finch (<i>Taeniopygia guttata</i>) brain: A highâ€resolution photo atlas. Journal of Comparative Neurology, 2013, 521, 3702-3715.	0.9	67
44	Impact of experience-dependent and -independent factors on gene expression in songbird brain. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17245-17252.	3.3	55
45	Chapter 30. Vitamin A and Brain Function. Food and Nutritional Components in Focus, 2012, , 516-531.	0.1	0
46	Increased bursting glutamatergic neurotransmission in an auditory forebrain area of the zebra finch (Taenopygia guttata) induced by auditory stimulation. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2012, 198, 705-716.	0.7	10
47	Noradrenergic Control of Gene Expression and Long-Term Neuronal Adaptation Evoked by Learned Vocalizations in Songbirds. PLoS ONE, 2012, 7, e36276.	1.1	41
48	Singing Under the Influence: Examining the Effects of Nutrition and Addiction on a Learned Vocal Behavior. Molecular Neurobiology, 2011, 44, 175-184.	1.9	1
49	No small feat: microRNA responses during vocal communication in songbirds. BMC Biology, 2011, 9, 35.	1.7	0
50	Organization and development of zebra finch HVC and paraHVC based on expression of <i>zRalDH</i> , an enzyme associated with retinoic acid production. Journal of Comparative Neurology, 2011, 519, 148-161.	0.9	12
51	Brain expression and song regulation of the cholecystokinin gene in the zebra finch (<i>Taeniopygia) Tj ETQq1 I</i>	0.78431	4 rgBT /Over
52	From songs to synapses: Molecular mechanisms of birdsong memory. BioEssays, 2011, 33, 377-385.	1.2	45
53	Serotonin, via HTR2 Receptors, Excites Neurons in a Cortical-like Premotor Nucleus Necessary for Song Learning and Production. Journal of Neuroscience, 2011, 31, 13808-13815.	1.7	25
54	Significance of vitamin A to brain function, behavior and learning. Molecular Nutrition and Food Research, 2010, 54, 489-495.	1.5	99

#	Article	IF	CITATIONS
55	The genome of a songbird. Nature, 2010, 464, 757-762.	13.7	770
56	Activation of frontal neocortical areas by vocal production in marmosets. Frontiers in Integrative Neuroscience, 2010, 4, .	1.0	36
57	Accelerated Evolution of PAK3- and PIM1-like Kinase Gene Families in the Zebra Finch, Taeniopygia guttata. Molecular Biology and Evolution, 2010, 27, 1923-1934.	3.5	12
58	Conservation and expression of IQâ€domainâ€containing calpacitin gene products (neuromodulin/GAPâ€43,) Tj E Neurobiology, 2009, 69, 124-140.	TQq0 0 0 1.5	rgBT /Overl 13
59	Sleep-dependent gene expression in the hippocampus and prefrontal cortex following long-term potentiation. Physiology and Behavior, 2009, 98, 44-52.	1.0	23
60	Dietary retinoic acid affects song maturation and gene expression in the song system of the zebra finch. Developmental Neurobiology, 2008, 68, 1213-1224.	1.5	19
61	Detection of two mRNA species at single-cell resolution by double-fluorescence in situ hybridization. Nature Protocols, 2008, 3, 1370-1379.	5.5	38
62	The Songbird Neurogenomics (SoNG) Initiative: Community-based tools and strategies for study of brain gene function and evolution. BMC Genomics, 2008, 9, 131.	1.2	126
63	Automatic recognition and statistical quantification of spatial patterns of gene expression in zebra finch brain in response to auditory stimulation. BMC Neuroscience, 2008, 9, .	0.8	0
64	Inhibitory Network Interactions Shape the Auditory Processing of Natural Communication Signals in the Songbird Auditory Forebrain. Journal of Neurophysiology, 2008, 100, 441-455.	0.9	52
65	Synapsins Are Late Activity-Induced Genes Regulated by Birdsong. Journal of Neuroscience, 2008, 28, 11871-11882.	1.7	26
66	Birdsong "Transcriptomics― Neurochemical Specializations of the Oscine Song System. PLoS ONE, 2008, 3, e3440.	1.1	85
67	GABA immunoreactivity in auditory and song control brain areas of zebra finches. Journal of Chemical Neuroanatomy, 2007, 34, 1-21.	1.0	46
68	Species differences in auditory processing dynamics in songbird auditory telencephalon. Developmental Neurobiology, 2007, 67, 1498-1510.	1.5	30
69	Enriched expression and developmental regulation of the middle-weight neurofilament (NF-m) gene in song control nuclei of the zebra finch. Journal of Comparative Neurology, 2007, 500, 477-497.	0.9	15
70	The excitatory thalamoâ€â€œcortical―projection within the song control system of zebra finches is formed by calbindinâ€expressing neurons. Journal of Comparative Neurology, 2007, 504, 601-618.	0.9	19
71	Storage of auditory temporal patterns in the songbird telencephalon. Neurocomputing, 2007, 70, 2030-2034.	3.5	3

Vocalizations and Associated Behaviors of the Sombre Hummingbird (Aphantochroa cirrhochloris) and the Rufous-Breasted Hermit (Glaucis hirsutus) (Vocalizaciones y Comportamientos Asociados de) Tj ETQq0 0 00gBT /Overlock 10 Tf

1.4

12

#	Article	IF	CITATIONS
73	Vocalizations and Associated Behaviors of the Sombre Hummingbird (Aphantochroa Cirrhochloris) and the Rufous-Breasted Hermit (Glaucis Hirsutus). Auk, 2006, 123, 1129-1148.	0.7	6
74	Calbindin-positive neurons reveal a sexual dimorphism within the songbird analogue of the mammalian auditory cortex. Journal of Neurobiology, 2006, 66, 182-195.	3.7	48
75	Auditory topography and temporal response dynamics of canary caudal telencephalon. Journal of Neurobiology, 2006, 66, 281-292.	3.7	55
76	VOCALIZATIONS AND ASSOCIATED BEHAVIORS OF THE SOMBRE HUMMINGBIRD (APHANTOCHROA) TJ ETQq 0 (0 o rgBT /(0.7	Dverlock 10 Tr 14
77	Immediate Early Gene Regulation in the Auditory System. , 2006, , 35-56.		9
78	Co-induction of activity-dependent genes in songbirds. European Journal of Neuroscience, 2005, 22, 1667-1678.	1.2	89
79	Avian brains and a new understanding of vertebrate brain evolution. Nature Reviews Neuroscience, 2005, 6, 151-159.	4.9	930
80	Cloning and expression analysis of retinoic acid receptors in the zebra finch brain. Journal of Comparative Neurology, 2005, 489, 23-41.	0.9	13
81	Gene regulation by song in the auditory telencephalon of songbirds. Frontiers in Bioscience - Landmark, 2004, 9, 63.	3.0	23
82	GABAergic neurons participate in the brain's response to birdsong auditory stimulation. European Journal of Neuroscience, 2004, 20, 1318-1330.	1.2	59
83	Songbirds and the Revised Avian Brain Nomenclature. Annals of the New York Academy of Sciences, 2004, 1016, 77-108.	1.8	146
84	Song-Induced Gene Expression: A Window on Song Auditory Processing and Perception. Annals of the New York Academy of Sciences, 2004, 1016, 263-281.	1.8	127
85	Revised nomenclature for avian telencephalon and some related brainstem nuclei. Journal of Comparative Neurology, 2004, 473, 377-414.	0.9	1,054
86	The Avian Brain Nomenclature Forum: Terminology for a New Century in Comparative Neuroanatomy. Journal of Comparative Neurology, 2004, 473, E1-E6.	0.9	37

90 Ch bra	napter IV Immediate-early gene (IEG) expression mapping of vocal communication areas in the avian ain. Handbook of Chemical Neuroanatomy, 2002, , 59-101.	0.3	7
--------------	--	-----	---

Identification and analysis of vocal communication pathways in birds through inducible gene expression. Anais Da Academia Brasileira De Ciencias, 2004, 76, 243-246.

Light-induced Egr-1 expression in the striate cortex of the opossum. Brain Research Bulletin, 2003, 61, 139-146.

Identification of differentially expressed transcripts in the human pathogenic fungus<i>Paracoccidioides brasiliensis</i>by differential display. Medical Mycology, 2002, 40, 45-51.

88

#	Article	IF	CITATIONS
91	Induction of Hippocampal Long-Term Potentiation during Waking Leads to Increased Extrahippocampal <i>zif-268</i> Expression during Ensuing Rapid-Eye-Movement Sleep. Journal of Neuroscience, 2002, 22, 10914-10923.	1.7	231
92	Mapping vocal communication pathways in birds with inducible gene expression. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2002, 188, 943-959.	0.7	69
93	Molecular targets of disulfiram action on song maturation in zebra finches. Molecular Brain Research, 2001, 87, 246-250.	2.5	18
94	Molecular mapping of brain areas involved in parrot vocal communication. , 2000, 419, 1-31.		156
95	Behaviourally driven gene expression reveals song nuclei in hummingbird brain. Nature, 2000, 406, 628-632.	13.7	279
96	Gene Expression and Synaptic Plasticity in the Auditory Forebrain of Songbirds. Learning and Memory, 2000, 7, 235-243.	0.5	38
97	Site-Specific Retinoic Acid Production in the Brain of Adult Songbirds. Neuron, 2000, 27, 359-370.	3.8	88
98	Brain Gene Expression During REM Sleep Depends on Prior Waking Experience. Learning and Memory, 1999, 6, 500-508.	0.5	201
99	An automated system for the mapping and quantitative analysis of immunocytochemistry of an inducible nuclear protein. Journal of Neuroscience Methods, 1999, 87, 147-158.	1.3	9
100	ZENK protein regulation by song in the brain of songbirds. , 1998, 393, 426-438.		209
101	Descending auditory pathways in the adult male zebra finch (Taeniopygia Guttata). Journal of Comparative Neurology, 1998, 395, 137-160.	0.9	172
102	Noradrenergic system of the zebra finch brain: Immunocytochemical study of dopamine-?-hydroxylase. Journal of Comparative Neurology, 1998, 400, 207-228.	0.9	119
103	Toward a Song Code. Neuron, 1998, 21, 359-371.	3.8	173
104	Descending auditory pathways in the adult male zebra finch (Taeniopygia Guttata). , 1998, 395, 137.		124
105	Isolation of Song-Regulated Genes in the Brain of Songbirds. , 1997, 85, 205-218.		30
106	Brain gene regulation by territorial singing behavior in freely ranging songbirds. NeuroReport, 1997, 8, 2073-2077.	0.6	57
107	Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches (Taenopygia guttata). , 1996, 366, 613-642.		473
108	Differential induction of theZENK gene in the avian forebrain and song control circuit after metrazole-induced depolarization. Journal of Neurobiology, 1995, 26, 145-161.	3.7	71

#	Article	IF	CITATIONS
109	Immediate-early gene responses in the avian song control system: cloning and expression analysis of the canary c-jun cDNA. Molecular Brain Research, 1994, 27, 299-309.	2.5	48