Shinjiro Yagyu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7097403/publications.pdf

Version: 2024-02-01

41 235 6 14
papers citations h-index g-index

41 41 316
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Direct feature extraction from two-dimensional X-ray diffraction images of semiconductor thin films for fabrication analysis. Science and Technology of Advanced Materials Methods, 2022, 2, 23-37.	1.3	1
2	Fullerene C ₇₀ /porphyrin hybrid nanoarchitectures: single-cocrystal nanoribbons with ambipolar charge transport properties. RSC Advances, 2022, 12, 19548-19553.	3.6	2
3	Accelerating two-dimensional X-ray diffraction measurement and analysis with density-based clustering for thin films. Japanese Journal of Applied Physics, 2021, 60, SCCG04.	1.5	2
4	High-Resolution Prediction for the Amount of Airborne Sea Salt by Multi-Scale Weather Simulation. Materials Transactions, 2021, 62, 1785-1790.	1.2	3
5	Development of the Material Sequencer for Automatic Various Evaluations. Journal of Surface Analysis (Online), 2021, 28, 35-45.	0.1	O
6	Valence Band Modification of a (Ga _{<i>x</i>}) ₂ O ₃ Solid Solution System Fabricated by Combinatorial Synthesis. ACS Combinatorial Science, 2020, 22, 433-439.	3.8	10
7	Automatic Threshold Prediction of Photoelectron Yield Spectroscopy (PYS) by Machine Learning. Vacuum and Surface Science, 2020, 63, 270-276.	0.1	2
8	Automatic Threshold Estimation from Photoelectron Yield Spectroscopy (PYS) - Automatic Estimation of Analysis Range by Residual Analysis Journal of Surface Analysis (Online), 2020, 27, 15-21.	0.1	2
9	Electrical and Structural Properties of the Partial Ternary Thin-Film System Ni–Si–B. ACS Combinatorial Science, 2019, 21, 310-315.	3.8	2
10	Validation with Measured Data of Photoelectron Yield Spectroscopy (PYS) Threshold Using Machine Learning. Vacuum and Surface Science, 2019, 62, 504-510.	0.1	3
11	Determination of Threshold of Photoelectron Yield Spectroscopy (PYS) Using Machine Learning. Vacuum and Surface Science, 2018, 61, 196-199.	0.1	3
12	System for Searching Relationship among Physical Properties for Materials Curation < sup>TM < /sup>. Vacuum and Surface Science, 2018, 61, 200-205.	0.1	3
13	Transport properties of single-component organic conductors, TED derivatives. Molecular Systems Design and Engineering, 2017, 2, 653-658.	3.4	2
14	Development of a Simple Probe for Non-Destructive Reversible Electric Contact to nm-Thick Films and 2D Films. E-Journal of Surface Science and Nanotechnology, 2015, 13, 307-311.	0.4	2
15	Development of Optical Fiber built-in Type Kelvin Probe —Development of Band Diagram Measurement System—. Journal of the Vacuum Society of Japan, 2015, 58, 144-146.	0.3	1
16	A Numerical Formula for General Prediction of Interface Bonding between Alumina and Aluminum-Containing Alloys. International Journal of Metals, 2014, 2014, 1-11.	0.3	7
17	Novel method for the prediction of an interface bonding species at alumina/metal interfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, .	2.1	10
18	A Novel Formula for General Prediction of an Interface Bonding Species between Alumina and Metal. Journal of the Vacuum Society of Japan, 2012, 55, 85-88.	0.3	3

#	Article	IF	CITATIONS
19	Adsorption of Phenylphosphonic Acid on Gold and Platinum Surfaces. Japanese Journal of Applied Physics, 2011, 50, 081606.	1.5	4
20	Adsorption of Phenylphosphonic Acid on Gold and Platinum Surfaces. Japanese Journal of Applied Physics, 2011, 50, 081606.	1.5	3
21	Growth of thin epitaxial alumina films onto Ni(111): an electron spectroscopy and diffraction study. Surface and Interface Analysis, 2010 , 42 , 1581 - 1584 .	1.8	8
22	XPS study on band alignment at PtOâ€terminated ZnO(0001) interface. Surface and Interface Analysis, 2010, 42, 1528-1531.	1.8	21
23	Adsorption structure of phenylphosphonic acid on an alumina surface. Applied Surface Science, 2009, 256, 1140-1143.	6.1	11
24	Work Function for Applications -How Work Function is Determined, Modified and Applied for Band Alignment IEEJ Transactions on Electronics, Information and Systems, 2009, 129, 1169-1175.	0.2	3
25	Adsorption structure and work function of dicarboxylic acid on $Cu(110)$ surface. Applied Surface Science, 2008, 254, 7835-7837.	6.1	6
26	Adsorption Structure and Work Function of Succinic Acid on Cu(110) Surface. Hyomen Kagaku, 2007, 28, 525-531.	0.0	3
27	Adsorption Structure of Glutaric Acid on Cu(110) Surface. Shinku/Journal of the Vacuum Society of Japan, 2007, 50, 386-389.	0.2	2
28	Adsorption Structure of Hydromuconic Acid on Cu(110) Surface. Shinku/Journal of the Vacuum Society of Japan, 2006, 49, 373-376.	0.2	2
29	Adsorption Structure and Work Function of N-Acetylglycine on Cu(110) Surface. Hyomen Kagaku, 2006, 27, 380-385.	0.0	1
30	Adsorption Structure of Adipic Acid on Cu(110) Surfaces. Hyomen Kagaku, 2005, 26, 510-513.	0.0	6
31	The effect of bias voltage on the measurement of local barrier height. Surface and Interface Analysis, 2004, 36, 1106-1109.	1.8	2
32	Distinguishing the dependence of the apparent local barrier height on measurement conditions. Surface and Interface Analysis, 2004, 36, 1110-1113.	1.8	3
33	Measurement of bias voltage dependence of local barrier height at constant tip-sample separation. Surface Science, 2003, 532-535, 1136-1139.	1.9	6
34	Bias voltage dependence of apparent local barrier height at constant tip–sample separation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1294-1297.	2.1	5
35	Distinguishing the Dependence of Apparent Local Barrier Height on Measurement Conditions. Shinku/Journal of the Vacuum Society of Japan, 2003, 46, 361-364.	0.2	0
36	Measurement of Local Barrier Height on the Reconstructed Au(111) Surface Shinku/Journal of the Vacuum Society of Japan, 2002, 45, 862-865.	0.2	2

Shinjiro Yagyu

#	Article	IF	CITATIONS
37	Bias Voltage Dependence of "Work Function ―at Nanometer-Scale by Scanning Tunneling Microscope. Journal of Surface Analysis (Online), 2002, 9, 488-500.	0.1	1
38	A Novel He Atom Scattering Technique Complementary to Temperature Programmed Desorption. Japanese Journal of Applied Physics, 2000, 39, 677-678.	1.5	5
39	Moir $ ilde{A}$ © contrast in the local tunneling barrier height images of monolayer graphite on Pt(111). Physical Review B, 2000, 61, 15653-15656.	3.2	78
40	Kerr effect microscope combined with a pulse magnet to observe high-entropy alloys fabricated using combinatorial technology. Science and Technology of Advanced Materials Methods, 0, , .	1.3	0
41	Ambipolar to Unipolar Irreversible Switching in Nanosheet Transistors: The Role of Ferrocene in Fullerene/Ferrocene Nanosheets. Journal of Materials Chemistry C, 0, , .	5.5	5