
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7097086/publications.pdf Version: 2024-02-01

FAC

#	Article	IF	CITATIONS
1	Manual laterality in nonhuman primates: A distinction between handedness and manual specialization Psychological Bulletin, 1991, 109, 76-89.	6.1	367
2	Handedness and Bimanual Coordination in the Lowland Gorilla. Brain, Behavior and Evolution, 1988, 32, 89-95.	1.7	130
3	Orthographic Processing in Baboons (<i>Papio papio</i>). Science, 2012, 336, 245-248.	12.6	127
4	Automated testing of cognitive performance in monkeys: Use of a battery of computerized test systems by a troop of semi-free-ranging baboons (Papio papio). Behavior Research Methods, 2010, 42, 507-516.	4.0	124
5	Automatic testing of cognitive performance in baboons maintained in social groups. Behavior Research Methods, 2009, 41, 396-404.	4.0	119
6	Evidence for large long-term memory capacities in baboons and pigeons and its implications for learning and the evolution of cognition. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17564-17567.	7.1	118
7	Global and local processing in humans (Homo sapiens) and chimpanzees (Pan troglodytes): Use of a visual search task with compound stimuli Journal of Comparative Psychology (Washington, D C:) Tj ETQq1 1 0.7	78 4 0351.4 rg	BT1/ Q verloc <mark>k</mark>
8	Processing of global and local visual information and hemispheric specialization in humans (Homo) Tj ETQq0 0 0 Performance, 1997, 23, 429-442.	rgBT /Ove 0.9	rlock 10 Tf 5(109
9	Same–different conceptualization by baboons (Papio papio): The role of entropy Journal of Comparative Psychology (Washington, D C: 1983), 2001, 115, 42-52.	0.5	98
10	Handedness and manual specialization in the baboon. Neuropsychologia, 1988, 26, 795-804.	1.6	96
11	Rotation of Mental Images in Baboons When the Visual Input Is Directed to the Left Cerebral Hemisphere. Psychological Science, 1993, 4, 99-103.	3.3	89
12	Discriminating the relation between relations: The role of entropy in abstract conceptualization by baboons (Papio papio) and humans (Homo sapiens) Journal of Experimental Psychology, 2001, 27, 316-328.	1.7	87
13	Asymmetrical hand use in rhesus monkeys (Macaca mulatta) in tactually and visually regulated tasks Journal of Comparative Psychology (Washington, D C: 1983), 1991, 105, 260-268.	0.5	86
14	Evidence of a Vocalic Proto-System in the Baboon (Papio papio) Suggests Pre-Hominin Speech Precursors. PLoS ONE, 2017, 12, e0169321.	2.5	83
15	Cultural evolution of systematically structured behaviour in a non-human primate. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141541.	2.6	82
16	Visual search for global/local stimulus features in humans and baboons. Psychonomic Bulletin and Review, 1998, 5, 476-481.	2.8	78
17	More accurate size contrast judgments in the Ebbinghaus Illusion by a remote culture Journal of Experimental Psychology: Human Perception and Performance, 2007, 33, 738-742.	0.9	77
18	Processing of global and local visual information and hemispheric specialization in humans (Homo) Tj ETQq0 0 0	rgBT /Ove 0.9	rlock 10 Tf 50 75

Performance, 1997, 23, 429-442.

#	Article	IF	CITATIONS
19	Local and global processing: Observations from a remote culture. Cognition, 2008, 108, 702-709.	2.2	72
20	Mirror-image matching and mental rotation problem solving by baboons (Papio papio): Unilateral input enhances performance Journal of Experimental Psychology: General, 1993, 122, 61-72.	2.1	64
21	Comparison of grouping abilities in humans (Homo sapiens) and baboons (Papio papio) with the Ebbinghaus illusion Journal of Comparative Psychology (Washington, D C: 1983), 2007, 121, 405-411.	0.5	64
22	Generalized Relational Matching by Guinea Baboons (<i>Papio papio</i>) in Two-by-Two-Item Analogy Problems. Psychological Science, 2011, 22, 1304-1309.	3.3	63
23	Categorizing facial identities, emotions, and genders: Attention to high- and low-spatial frequencies by children and adults. Journal of Experimental Child Psychology, 2005, 90, 172-184.	1.4	58
24	Centre-embedded structures are a by-product of associative learning and working memory constraints: Evidence from baboons (Papio Papio). Cognition, 2012, 123, 180-184.	2.2	58
25	Effects of freely accessible computerized test systems on the spontaneous behaviors and stress level of Guinea baboons (<i>Papio papio</i>). American Journal of Primatology, 2014, 76, 56-64.	1.7	57
26	Perception of Partly Occluded Figures by Baboons (Papio Papio). Perception, 2000, 29, 1483-1497.	1.2	48
27	Perception of the corridor illusion by baboons (Papio papio). Behavioural Brain Research, 2002, 132, 111-115.	2.2	47
28	Spontaneous Hand Usage and Handedness in a Troop of Baboons. Cortex, 1987, 23, 265-274.	2.4	46
29	Learning of spatial statistics in nonhuman primates: Contextual cueing in baboons (Papio papio). Behavioural Brain Research, 2013, 247, 101-109.	2.2	45
30	Discriminating the relation between relations: the role of entropy in abstract conceptualization by baboons (Papio papio) and humans (Homo sapiens). Journal of Experimental Psychology, 2001, 27, 316-28.	1.7	44
31	Behavioural responses to photographs by pictorially naà ve baboons (Papio anubis), gorillas (Gorilla) Tj ETQq1	l 0.784314 1.1	\cdot rg $_{42}^{\text{BT}}$ /Overic
32	Relational matching in baboons (Papio papio) with reduced grouping requirements Journal of Experimental Psychology, 2010, 36, 184-193.	1.7	42
33	Cognitive control under social influence in baboons Journal of Experimental Psychology: General, 2014, 143, 2067-2073.	2.1	40
34	Do Humans and Baboons Use the Same Information When Categorizing Human and Baboon Faces?. Psychological Science, 2006, 17, 599-607.	3.3	39
35	First trial rewards promote 1-trial learning and prolonged memory in pigeon and baboon. Proceedings of the United States of America, 2009, 106, 9530-9533.	7.1	39
36	Baboons, like humans, solve analogy by categorical abstraction of relations. Animal Cognition, 2013, 16, 519-524.	1.8	39

#	Article	IF	CITATIONS
37	Effects of number of items on the baboon's discrimination of same from different visual displays. Animal Cognition, 2001, 4, 163-170.	1.8	38
38	Processing of compound visual stimuli by children with autism and Asperger syndrome. International Journal of Psychology, 2006, 41, 97-106.	2.8	36
39	Which way to the dawn of speech?: Reanalyzing half a century of debates and data in light of speech science. Science Advances, 2019, 5, eaaw3916.	10.3	36
40	Processing of biological motion point-light displays by baboons (Papio papio) Journal of Experimental Psychology, 2007, 33, 381-391.	1.7	33
41	Sensitivity to geometric shape regularity in humans and baboons: A putative signature of human singularity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	7.1	33
42	Effects of element separation on perceptual grouping by humans (Homo sapiens) and chimpanzees (Pan) Tj ETQ	q0.0.0 rgB 1.8	T /Qverlock I
43	A comparative study of working memory: Immediate serial spatial recall in baboons (Papio papio) and humans. Neuropsychologia, 2011, 49, 3870-3880.	1.6	32
44	How to read a picture: Lessons from nonhuman primates. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 519-520.	7.1	31
45	Transposed-Letter Effects Reveal Orthographic Processing in Baboons. Psychological Science, 2013, 24, 1609-1611.	3.3	31
46	Asymmetric grasping response in neonate chimpanzees (pan troglodytes). , 1995, 18, 253-255.		29
47	Executive control of perceptual features and abstract relations by baboons (Papio papio). Behavioural Brain Research, 2011, 222, 176-182.	2.2	29
48	Processing of above/below categorical spatial relations by baboons (Papio papio). Behavioural Processes, 1999, 48, 1-9.	1.1	28
49	Perception of pictorial human faces by baboons: Effects of stimulus orientation on discrimination performance. Learning and Behavior, 2001, 29, 10-20.	3.4	28
50	Associative learning in baboons (Papio papio) and humans (Homo sapiens): species differences in learned attention to visual features. Animal Cognition, 1998, 1, 123-133.	1.8	26
51	The Temporal Dynamics of Regularity Extraction in Nonâ€Human Primates. Cognitive Science, 2016, 40, 1019-1030.	1.7	26
52	Cross-modal integration and conceptual categorization in baboons. Behavioural Brain Research, 2001, 122, 209-213.	2.2	25
53	Cross-species differences in color categorization. Psychonomic Bulletin and Review, 2006, 13, 275-280.	2.8	25
54	Amodal completion by baboons (Papio papio): contribution of background depth cues. Primates, 2006, 47, 145-150.	1.1	25

4

#	Article	IF	CITATIONS
55	Regularity Extraction Across Species: Associative Learning Mechanisms Shared by Human and Nonâ€Human Primates. Topics in Cognitive Science, 2019, 11, 573-586.	1.9	25
56	Haptic Discrimination of Nonsense Shapes: Hand Exploratory Strategies but Not Accuracy Reveal Laterality Effects. Brain and Cognition, 1993, 21, 212-225.	1.8	24
57	Categorisation of three-dimensional stimuli by humans and baboons: search for prototype effects. Behavioural Processes, 1997, 39, 299-306.	1.1	24
58	Detecting social (in)stability in primates from their temporal co-presence network. Animal Behaviour, 2019, 157, 239-254.	1.9	24
59	Manual and hemispheric specialization in the manipulation of a joystick by baboons (Papio papio) Behavioral Neuroscience, 1993, 107, 210-214.	1.2	23
60	High-fidelity copying is not necessarily the key to cumulative cultural evolution: a study in monkeys and children. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190729.	2.6	23
61	Enhanced Cognitive Flexibility in the Seminomadic Himba. Journal of Cross-Cultural Psychology, 2019, 50, 47-62.	1.6	21
62	Deep Learning of Orthographic Representations in Baboons. PLoS ONE, 2014, 9, e84843.	2.5	20
63	Nonâ€adjacent Dependencies Processing in Human and Nonâ€human Primates. Cognitive Science, 2018, 42, 1677-1699.	1.7	20
64	Hand-movement profiles in a tactual—tactual matching task: Effects of spatial factors and laterality. Perception & Psychophysics, 1994, 56, 347-355.	2.3	19
65	Hemispheric Lateralisation and Global Precedence Effects in the Processing of Visual Stimuli by Humans and Baboons (<i>Papio papio</i>). Laterality, 1997, 2, 233-246.	1.0	19
66	Role of Sensory and Post-Sensory Factors on Hemispheric Asymmetries in Tactual Perception. Advances in Psychology, 1997, , 469-494.	0.1	19
67	Eye movements in baboons performing a matching-to-sample task presented in a divided-field format. Behavioural Brain Research, 1994, 63, 61-70.	2.2	18
68	Video-task assessment of stimulus novelty effects on hemispheric lateralization in baboons (Papio) Tj ETQq0 0 0) rg8 <u>7</u> /0v	erlock 10 Tf 50
69	Picture processing in tufted capuchin monkeys (Cebus apella). Behavioural Processes, 2009, 82, 140-152.	1.1	18
70	Analogical reasoning in baboons (Papio papio): Flexible reencoding of the source relation depending on the target relation. Learning and Behavior, 2013, 41, 229-237.	1.0	18
71	Baboons' Response Speed Is Biased by Their Moods. PLoS ONE, 2014, 9, e102562.	2.5	18
72	Using Automated Learning Devices for Monkeys (ALDM) to study social networks. Behavior Research Methods, 2017, 49, 24-34.	4.0	17

#	Article	IF	CITATIONS
73	Hand Movements and Hemispheric Specialization in Dichhaptic Explorations. Perception, 1993, 22, 847-853.	1.2	16
74	Comparative Assessment of Distance Processing and Hemispheric Specialization in Humans and Baboons (Papio papio). Brain and Cognition, 1998, 38, 165-182.	1.8	16
75	Convergent transformation and selection in cultural evolution. Evolution and Human Behavior, 2018, 39, 191-202.	2.2	16
76	Assessment of metacognitive monitoring and control in baboons (Papio papio). Animal Cognition, 2015, 18, 1347-1362.	1.8	15
77	Baboons (<i>Papio papio</i>) spontaneously process the firstâ€order but not secondâ€order configural properties of faces. American Journal of Primatology, 2008, 70, 415-422.	1.7	14
78	Age effects on transfer index performance and executive control in baboons (Papio papio). Frontiers in Psychology, 2014, 5, 188.	2.1	14
79	Manual Specialization in Gorillas and Baboons. Recent Research in Psychology, 1993, , 193-205.	0.5	14
80	Control of the Corridor Illusion in Baboons (Papio Papio) by Gradient and Linear-Perspective Depth Cues. Perception, 2007, 36, 391-402.	1.2	13
81	Contribution of working memory processes to relational matching-to-sample performance in baboons (Papio papio) Journal of Comparative Psychology (Washington, D C: 1983), 2013, 127, 370-379.	0.5	13
82	Cross-species Assessment of the Linguistic Origins of Color Categories Comparative Cognition and Behavior Reviews, 0, 5, 100-116.	2.0	12
83	Sex differences in inhibitory control in socially-housed baboons (Papio papio). Behavioural Brain Research, 2016, 312, 231-237.	2.2	12
84	Age-dependant behavioral strategies in a visual search task in baboons (Papio papio) and their relation to inhibitory control Journal of Comparative Psychology (Washington, D C: 1983), 2013, 127, 194-201.	0.5	11
85	Categorization does not promote symmetry in Guinea baboons (Papio papio). Animal Cognition, 2016, 19, 987-998.	1.8	11
86	Picture Perception in Birds: Perspective from Primatologists Comparative Cognition and Behavior Reviews, 0, 5, 132-135.	2.0	10
87	Baboons (Papio papio), but not humans, break cognitive set in a visuomotor task. Animal Cognition, 2015, 18, 1339-1346.	1.8	10
88	The baboon: A model for the study of language evolution. Journal of Human Evolution, 2019, 126, 39-50.	2.6	10
89	Baboons (Papio papio) Process a Context-Free but Not a Context-Sensitive Grammar. Scientific Reports, 2020, 10, 7381.	3.3	10
90	Perception of pictorial eye gaze by baboons (Papio papio) Journal of Experimental Psychology, 2002, 28, 298-308.	1.7	9

#	Article	IF	CITATIONS
91	Perceptual and categorical judgements of colour similarity. Journal of Cognitive Psychology, 2012, 24, 871-892.	0.9	9
92	The Evolution of Chunks in Sequence Learning. Cognitive Science, 2022, 46, e13124.	1.7	9
93	Concept of uprightness in baboons: assessment with pictures of realistic scenes. Animal Cognition, 2009, 12, 369-379.	1.8	8
94	Assessment of Social Cognition in Non-human Primates Using a Network of Computerized Automated Learning Device (ALDM) Test Systems. Journal of Visualized Experiments, 2015, , e52798.	0.3	8
95	Constraints on the lexicons of human languages have cognitive roots present in baboons (<i>Papio) Tj ETQq1 1 14926-14930.</i>	0.784314 7.1	rgBT /Overlo 8
96	Lateralization in haptic processing: An apparatus for analyzing manual strategies. Behavior Research Methods, 1992, 24, 54-59.	1.3	7
97	The experimental emergence of convention in a non-human primate. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200310.	4.0	7
98	Object-specific and relational learning in pigeons. Animal Cognition, 2015, 18, 205-218.	1.8	6
99	Other better versus self better in baboons: an evolutionary approach of social comparison. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170248.	2.6	6
100	Processing of contour closure by baboons (Papio papio) Journal of Experimental Psychology, 2011, 37, 407-419.	1.7	5
101	Effects of training condition on the contribution of specific items to relational processing in baboons (Papio papio). Animal Cognition, 2014, 17, 911-924.	1.8	5
102	Computerized assessment of dominance hierarchy in baboons (Papio papio). Behavior Research Methods, 2021, 53, 1923-1934.	4.0	5
103	Learning Higherâ€Order Transitional Probabilities in Nonhuman Primates. Cognitive Science, 2022, 46, e13121.	1.7	5
104	Behavioral assessment of combinatorial semantics in baboons (Papio papio). Behavioural Processes, 2016, 123, 54-62.	1.1	4
105	The processing of positional information in a two-item sequence limits the emergence of symmetry in baboons (Papio papio), but not in humans (Homo sapiens). Learning and Behavior, 2018, 46, 67-78.	1.0	4
106	Simultaneous learning of directional and non-directional stimulus relations in baboons (Papio papio). Learning and Behavior, 2023, 51, 166-178.	1.0	4
107	Orthographic processing in animals: Implications for comparative psychologists. Learning and Behavior, 2017, 45, 209-210.	1.0	3
108	Emotion-Cognition Interaction in Nonhuman Primates. Psychological Science, 2017, 28, 3-11.	3.3	3

#	Article	IF	CITATIONS
109	Associative symmetry: a divide between humans and nonhumans?. Trends in Cognitive Sciences, 2022, 26, 286-289.	7.8	3
110	First- and second-order configural sensitivity for greeble stimuli in baboons. Learning and Behavior, 2010, 38, 374-381.	1.0	2
111	Response to Comment on "Orthographic Processing in Baboons (<i>Papio papio</i>)― Science, 2012, 337, 1173-1173.	12.6	2
112	What Can We Learn From Humans About Orthographic Processing in Monkeys? A Reply to Frost and Keuleers (2013). Psychological Science, 2013, 24, 1870-1871.	3.3	2
113	Grouping and Segmentation of Visual Objects by Baboons (Papio papio) and Humans (Homo sapiens). , 2009, , 15-28.		2
114	Etude comparative des phénomènes de groupement perceptif chez le babouin, le chimpanzé et l'humaiı Revue De Primatologie, 2016, , .	^{1.} 0.0	1
115	Understanding Imitation in <i>Papio papio</i> : The Role of Experience and the Presence of a Conspecific Demonstrator. Cognitive Science, 2022, 46, e13117.	1.7	1
116	Categorization of vocal and nonvocal stimuli in Guinea baboons (<i>Papio papio</i>). American Journal of Primatology, 2022, , e23387.	1.7	1
117	Are monkeys sensitive to informativeness: An experimental study with baboons (Papio papio). PLoS ONE, 2022, 17, e0270502.	2.5	1
118	A new behavioral test procedure at the interface between "Naturalist―and "Generalist―approaches of primate cognition. Revue De Primatologie, 2010, , .	0.0	0
119	Grouping and Segmentation in Human and Nonhuman Primates. , 2012, , .		0
120	Analogical Reasoning. , 2017, , 1-6.		0
121	Prix International de la Fondation Fyssen 2017. Revue De Primatologie, 2018, , .	0.0	0
122	Analogical Reasoning. , 2022, , 245-250.		0
123	On the role of interference in sequence learning in Guinea baboons (Papio papio). Learning and Behavior, 0, , .	1.0	0