Peter Fischer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7097072/publications.pdf

Version: 2024-02-01

252 papers 9,720 citations

47 h-index 92 g-index

262 all docs 262 docs citations

times ranked

262

9827 citing authors

#	Article	IF	Citations
1	Advanced magnetic X-ray spectro-microscopies to characterize mesoscopic magnetic materials. Journal of Magnetism and Magnetic Materials, 2022, 545, 168734.	1.0	O
2	Discretized evolution of solitons in the achiral stripe phase of a Fe/Gd thin film. Physical Review B, 2022, 105 , .	1.1	1
3	Room-temperature skyrmion lattice in a layered magnet (Fe _{0.5} Co _{0.5}) ₅ GeTe ₂ . Science Advances, 2022, 8, eabm7103.	4.7	55
4	A room temperature polar magnetic metal. Physical Review Materials, 2022, 6, .	0.9	21
5	Magnetoelastic resonance as a probe for exchange springs at antiferromagnet-ferromagnet interfaces. Physical Review B, 2022, 105, .	1.1	3
6	Characterizing magnetic skyrmions at their fundamental length and time scales., 2021,, 55-97.		1
7	Chiral Spin Textures in Amorphous Iron–Germanium Thick Films. Advanced Materials, 2021, 33, e2004830.	11.1	13
8	Ferromagnetic liquid droplets with adjustable magnetic properties. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
9	Magnetic Materials: Chiral Spin Textures in Amorphous Iron–Germanium Thick Films (Adv. Mater.) Tj ETQq1 1 (0.784314 	rgBT /Overloc
10	Creation and observation of Hopfions in magnetic multilayer systems. Nature Communications, 2021, 12, 1562.	5.8	95
11	Magnetism in curved geometries. Journal of Applied Physics, 2021, 129, .	1.1	29
12	Spontaneous fluctuations in a magnetic Fe/Gd skyrmion lattice. Physical Review Research, 2021, 3, .	1.3	9
13	The effect of Cu additions in FePt–BN–SiO ₂ heat-assisted magnetic recording media. Journal of Physics Condensed Matter, 2021, 33, 104003.	0.7	8
14	Ferromagnetic resonances in single-crystal yttrium iron garnet nanofilms fabricated by metal-organic decomposition. Applied Physics Letters, 2021, 119, .	1.5	3
15	Field-Driven Dynamics of Magnetic Hopfions. Physical Review Letters, 2021, 127, 257201.	2.9	21
16	Cherenkov-type three-dimensional breakdown behavior of the Bloch-point domain wall motion in the cylindrical nanowire. Applied Physics Letters, 2020, 117, 062402.	1.5	10
17	Skyrmion fluctuations at a first-order phase transition boundary. Applied Physics Letters, 2020, 116, .	1.5	12
18	Artificial Double-Helix for Geometrical Control of Magnetic Chirality. ACS Nano, 2020, 14, 8084-8092.	7.3	58

#	Article	IF	CITATIONS
19	Launching a new dimension with 3D magnetic nanostructures. APL Materials, 2020, 8, .	2.2	88
20	Geometrical control of magnetic chirality using 3D-printed nanomaterials. , 2020, , .		0
21	Reconfigurable ferromagnetic liquid droplets. Science, 2019, 365, 264-267.	6.0	278
22	Generation and stability of structurally imprinted target skyrmions in magnetic multilayers. Applied Physics Letters, 2019, 115, .	1.5	14
23	Toward Chiralityâ€Encoded Domain Wall Logic. Advanced Functional Materials, 2019, 29, 1807282.	7.8	23
24	Origin of enhanced anisotropy in FePt-C granular films revealed by XMCD. Applied Physics Letters, 2019, 114, .	1.5	2
25	Scaling of domain cascades in stripe and skyrmion phases. Nature Communications, 2019, 10, 1988.	5.8	9
26	Ion-Induced Formation of Nanocrystalline Cellulose Colloidal Glasses Containing Nematic Domains. Langmuir, 2019, 35, 4117-4124.	1.6	46
27	Metric-Driven Learning of Correspondence Weighting for 2-D/3-D Image Registration. Lecture Notes in Computer Science, 2019, , 140-152.	1.0	10
28	First Observation of Optical Activity in Hyper-Rayleigh Scattering. Physical Review X, 2019, 9, .	2.8	24
29	Dynamics of the Bloch point in an asymmetric permalloy disk. Nature Communications, 2019, 10, 593.	5.8	33
30	Thermally and field-driven mobility of emergent magnetic charges in square artificial spin ice. Scientific Reports, 2019, 9, 15989.	1.6	18
31	Textured heterogeneity in square artificial spin ice. Physical Review B, 2019, 99, .	1.1	1
32	Spatial and Temporal Correlations of <i>XY</i> Macro Spins. Nano Letters, 2018, 18, 7428-7434.	4.5	29
33	Structure and Nanomechanics of Dry and Hydrated Intermediate Filament Films and Fibers Produced from Hagfish Slime Fibers. ACS Applied Materials & Samp; Interfaces, 2018, 10, 40460-40473.	4.0	9
34	Experimental Evidence of Chiral Ferrimagnetism in Amorphous GdCo Films. Advanced Materials, 2018, 30, e1800199.	11.1	42
35	Magnetic Materials: Experimental Evidence of Chiral Ferrimagnetism in Amorphous GdCo Films (Adv.) Tj ETQq1	1 0.784314 11.1	t rgBT /Overlo
36	Directly observed dynamics of distorted vortex cores including asymmetric Bloch walls utilizing soft X-ray microscopy , 2018, , .		0

#	Article	IF	CITATIONS
37	Simultaneous control of magnetic topologies for reconfigurable vortex arrays. NPG Asia Materials, 2017, 9, e348-e348.	3.8	18
38	Three-dimensional nanomagnetism. Nature Communications, 2017, 8, 15756.	5.8	398
39	Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy. Nature Communications, 2017, 8, 15573.	5.8	143
40	2016 ALS User Meeting Highlights. Synchrotron Radiation News, 2017, 30, 2-5.	0.2	0
41	Tailoring magnetic energies to form dipole skyrmions and skyrmion lattices. Physical Review B, 2017, 95, .	1.1	160
42	The 2017 Magnetism Roadmap. Journal Physics D: Applied Physics, 2017, 50, 363001.	1.3	279
43	X-rays used to watch spins in 3D. Nature, 2017, 547, 290-291.	13.7	4
44	Nanosecond X-Ray Photon Correlation Spectroscopy on Magnetic Skyrmions. Physical Review Letters, 2017, 119, 067403.	2.9	51
45	Understanding the Enhanced Magnetic Response of Aminocholesterol Doped Lanthanide-Ion-Chelating Phospholipid Bicelles. Langmuir, 2017, 33, 8533-8544.	1.6	4
46	Magnetic imaging with polarized soft x-rays. Journal Physics D: Applied Physics, 2017, 50, 313002.	1.3	15
47	Resonant properties of dipole skyrmions in amorphous Fe/Gd multilayers. Physical Review B, 2017, 95, .	1.1	44
48	Vortex circulation patterns in planar microdisk arrays. Applied Physics Letters, 2017, 110, .	1.5	16
49	Interface-induced phenomena in magnetism. Reviews of Modern Physics, 2017, 89, .	16.4	672
50	Role of the postâ€annealing conditions on the conductivity of niobium doped titanium dioxide electrodes prepared by sol–gel and their function in organic solar cells. Physica Status Solidi C: Current Topics in Solid State Physics, 2017, 14, 1700011.	0.8	0
51	Realization of Ground-State Artificial Skyrmion Lattices at Room Temperature. , 2016, , .		1
52	Synthesizing skyrmion bound pairs in Fe-Gd thin films. Applied Physics Letters, 2016, 109, .	1.5	67
53	Soft x-ray ptychography studies of nanoscale magnetic and structural correlations in thin SmCo5 films. Applied Physics Letters, 2016, 108, .	1.5	75
54	Magnetism in curved geometries. Journal Physics D: Applied Physics, 2016, 49, 363001.	1.3	263

#	Article	IF	Citations
55	Scanning-SAXS of microfluidic flows: nanostructural mapping of soft matter. Lab on A Chip, 2016, 16, 4028-4035.	3.1	42
56	Magnetic properties of ultrathin discontinuous Co/Pt multilayers: Comparison with short-range ordered and isotropicCoPt3films. Physical Review B, 2016, 93, .	1.1	16
57	First operation of a DSSC hybrid 2D soft X-ray imager with 4.5 MHz frame rate. , 2016, , .		0
58	Ultrathin IBAD MgO films for epitaxial growth on amorphous substrates and sub-50 nm membranes. Applied Physics Letters, 2016, 109, .	1.5	4
59	Recent Advances and Future Opportunities with Magnetic Soft X-ray Microscopy. Microscopy and Microanalysis, 2016, 22, 1672-1673.	0.2	0
60	Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nature Materials, 2016, 15, 501-506.	13.3	1,331
61	EUV Research at Berkeley Lab: Enabling Technologies and Applications. Springer Proceedings in Physics, 2016, , 293-300.	0.1	0
62	Binary pseudo-random patterned structures for modulation transfer function calibration and resolution characterization of a full-field transmission soft x-ray microscope. Review of Scientific Instruments, 2015, 86, 123702.	0.6	8
63	Magnetization dynamics of imprinted non-collinear spin textures. Applied Physics Letters, 2015, 107, .	1.5	20
64	Frontiers in imaging magnetism with polarized x-rays. Frontiers in Physics, 2015, 2, .	1.0	5
65	Manipulating Topological States by Imprinting Non-Collinear Spin Textures. Scientific Reports, 2015, 5, 8787.	1.6	38
66	Ballistic rectification of vortex domain wall chirality at nanowire corners. Applied Physics Letters, 2015, 107, .	1.5	13
67	Dynamics and efficiency of magnetic vortex circulation reversal. Physical Review B, 2015, 91, .	1.1	12
68	Optimal Length of Low Reynolds Number Nanopropellers. Nano Letters, 2015, 15, 4412-4416.	4.5	78
69	X-Ray Imaging of Magnetic Structures. IEEE Transactions on Magnetics, 2015, 51, 1-31.	1.2	37
70	Magnetic soft x-ray tomography of magnetic Swiss roll architectures. , 2015, , .		0
71	Magnetic chiral spin textures by imprinting. , 2015, , .		0
72	Magnetic coupling of vortices in a two-dimensional lattice. Nanotechnology, 2015, 26, 465706.	1.3	14

#	Article	IF	CITATIONS
73	Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies. Nature Communications, 2015, 6, 7612.	5.8	108
74	Quantitative x-ray magnetic circular dichroism mapping with high spatial resolution full-field magnetic transmission soft x-ray spectro-microscopy. Journal of Applied Physics, 2015, 117, 17D145.	1.1	7
75	Realization of ground-state artificial skyrmion lattices at room temperature. Nature Communications, 2015, 6, 8462.	5.8	184
76	Sub-nanosecond signal propagation in anisotropy-engineered nanomagnetic logic chains. Nature Communications, 2015, 6, 6466.	5.8	26
77	X-rays and magnetism. Reports on Progress in Physics, 2015, 78, 094501.	8.1	49
78	Temperature and magnetic-field driven dynamics in artificial magnetic square ice., 2015,,.		2
79	Magnetic Microscopy of Layered Structures. Springer Series in Surface Sciences, 2015, , .	0.3	33
80	ATTENUATION OF SURFACE ACOUSTIC WAVES BY SPIN–WAVE EXCITATIONS IN Co ₆₀ Fe ₂₀ B ₂₀ <2014, 04, 1440005.	0.6	0
81	Stochastic formation of magnetic vortex structures in asymmetric disks triggered by chaotic dynamics. Nature Communications, 2014, 5, 5620.	5.8	31
82	Magnetic Microstructure of Rolledâ€Up Singleâ€Layer Ferromagnetic Nanomembranes. Advanced Materials, 2014, 26, 316-323.	11.1	79
83	Fast generation of domain walls with defined chirality in nanowires. Applied Physics Letters, 2014, 104,	1.5	5
84	Suppression of stochastic pinning in magnetic nanowire devices using "virtual―domain walls. Journal of Applied Physics, 2014, 116, 123914.	1.1	4
85	Planar organic spin valves using nanostructured Ni80Fe20 magnetic contacts. Organic Electronics, 2014, 15, 276-280.	1.4	7
86	First principles thermodynamic studies for recycling spent nuclear fuels using electrorefining with a molten salt electrolyte. Energy, 2014, 68, 751-755.	4.5	14
87	X-ray Holographic Microscopy by Self-Interference Incoherent Digital Holography. , 2014, , .		0
88	First principles computational study on the electrochemical stability of Pt–Co nanocatalysts. Nanoscale, 2013, 5, 8625.	2.8	71
89	Linear transport of domain walls confined to propagating 1-D potential wells. Journal of Applied Physics, 2013, 114, 163901.	1.1	3
90	Resonant amplification of vortex-core oscillations by coherent magnetic-field pulses. Scientific Reports, 2013, 3, 1301.	1.6	13

#	Article	IF	CITATIONS
91	Wave modes of collective vortex gyration in dipolar-coupled-dot-array magnonic crystals. Scientific Reports, 2013, 3, 2262.	1.6	66
92	Imaging Magnetic Structures with Polarized Soft X-rays. Synchrotron Radiation News, 2013, 26, 12-19.	0.2	1
93	Tuning of the nucleation field in nanowires with perpendicular magnetic anisotropy. Journal of Applied Physics, 2013, 113, 163902.	1.1	21
94	Dynamic switching of the spin circulation in tapered magnetic nanodisks. Nature Nanotechnology, 2013, 8, 341-346.	15.6	106
95	Magnetic imaging with full-field soft X-ray microscopies. Journal of Electron Spectroscopy and Related Phenomena, 2013, 189, 196-205.	0.8	12
96	Soft x-ray microscopy: facing the mesoscale challenge in magnetism. , 2013, , .		0
97	A new twist on organic spintronics: controlling transport in organic sandwich devices using fringe fields from ferromagnetic films. Proceedings of SPIE, 2013, , .	0.8	1
98	Magnetic Imaging with Polarized Soft X-rays. Springer Proceedings in Physics, 2013, , 155-183.	0.1	1
99	Real space soft x-ray imaging at 10 nm spatial resolution. Optics Express, 2012, 20, 9777.	1.7	225
100	Asymmetric magnetization reversal in dipolarly coupled spin valve structures with perpendicular magnetic anisotropy. Physical Review B, 2012, 85, .	1.1	18
101	Probing nanoscale behavior of magnetic materials with soft X-ray spectromicroscopy. Nanotechnology Reviews, 2012, 1, 5-15.	2.6	9
102	A DRIFTS study of CO adsorption and hydrogenation on Cu-based core–shell nanoparticles. Catalysis Science and Technology, 2012, 2, 621.	2.1	42
103	Logic Operations Based on Magnetic-Vortex-State Networks. ACS Nano, 2012, 6, 3712-3717.	7.3	84
104	Magnetic soft x-ray microscopy of the domain wall depinning process in permalloy magnetic nanowires. Journal of Physics Condensed Matter, 2012, 24, 024203.	0.7	9
105	Perpendicular magnetic anisotropy in ultrathin <mml:math altimg="si0003.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Co</mml:mi><mml:mo> </mml:mo> <mml:mi>Ni</mml:mi></mml:math> multilayer films studied with ferromagnetic resonance and magnetic x-ray microspectroscopy.	1.0	36
106	Journal of Magnetism and Magnetic Materials, 2012, 324, 3629-3632. X-ray imaging of nonlinear resonant gyrotropic magnetic vortex core motion in circular permalloy disks. Journal of Applied Physics, 2012, 111, 07D311.	1.1	9
107	Vortex dynamics in triangular-shaped confining potentials. Journal of Applied Physics, 2012, 112, 063916.	1.1	16
108	Symmetry breaking in the formation of magnetic vortex states in a permalloy nanodisk. Nature Communications, 2012, 3, 983.	5.8	110

#	Article	IF	CITATIONS
109	Scaling of the coercivity with the geometrical parameters in epitaxial Fe antidot arrays. Journal of Applied Physics, 2012, 111, 073908.	1.1	14
110	Correction to "Finite Size Effect on Spread of Resonance Frequencies in Arrays of Coupled Vortices― [Jun 11 1610-1613]. IEEE Transactions on Magnetics, 2012, 48, 1252-1252.	1.2	O
111	Finite Size Effect on Spread of Resonance Frequencies in Arrays of Coupled Vortices. IEEE Transactions on Magnetics, 2011, 47, 1610-1613.	1.2	6
112	Real-Time High-Resolution X-ray Imaging and Nuclear Magnetic Resonance Study of the Hydration of Pure and Na-Doped C ₃ A in the Presence of Sulfates. Inorganic Chemistry, 2011, 50, 1203-1212.	1.9	26
113	Memory-bit selection and recording by rotating fields in vortex-core cross-point architecture. Applied Physics Letters, 2011, 98, .	1.5	60
114	Tunable negligible-loss energy transfer between dipolar-coupled magnetic disks by stimulated vortex gyration. Scientific Reports, 2011, 1, 59.	1.6	88
115	Focused ion beam patterned Fe thin films: A study by selective area Stokes polarimetry and soft x-ray microscopy. Journal of Applied Physics, 2011, 109, .	1.1	4
116	Soft Xâ€ray Microscopy of Green Cements. , 2011, , .		1
117	Exploring nanoscale magnetism in advanced materials with polarized X-rays. Materials Science and Engineering Reports, 2011, 72, 81-95.	14.8	18
118	X-ray imaging of vortex cores in confined magnetic structures. Physical Review B, 2011, 83, .	1.1	31
119	X-Ray Diffraction Microscopy of Magnetic Structures. Physical Review Letters, 2011, 107, 033904.	2.9	44
120	Polarization-selective vortex-core switching by tailored orthogonal Gaussian-pulse currents. Physical Review B, 2011, 83, .	1.1	13
121	Field- and current-induced domain-wall motion in permalloy nanowires with magnetic soft spots. Applied Physics Letters, 2011, 98, 202501.	1.5	30
122	Transverse Field-Induced Nucleation Pad Switching Modes During Domain Wall Injection. IEEE Transactions on Magnetics, 2010, 46, 963-967.	1.2	12
123	Domain-Wall Pinning and Depinning at Soft Spots in Magnetic Nanowires. IEEE Transactions on Magnetics, 2010, 46, 1708-1710.	1.2	16
124	Viewing spin structures with soft X-ray microscopy. Materials Today, 2010, 13, 14-22.	8.3	21
125	Layer resolved magnetization reversal study in SmCo ₅ /Fe nanocomposite bilayers. Chinese Physics B, 2010, 19, 037504.	0.7	6
126	Direct imaging of domain-wall interactions in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mrow>nanowires. Physical Review B, 2010, 81, .</mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	/> < mml:mi	n>80

#	Article	IF	CITATIONS
127	High-Resolution X-Ray Lensless Imaging by Differential Holographic Encoding. Physical Review Letters, 2010, 105, 043901.	2.9	77
128	Magnetic soft x-ray imaging of vortex core dynamics. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 198-201.	0.6	1
129	Analytical modeling and x-ray imaging of oscillations of a single magnetic domain wall. Physical Review B, 2010, 81, .	1.1	11
130	ALS Users Meeting and Workshops. Synchrotron Radiation News, 2010, 23, 2-14.	0.2	O
131	Magnetic vortex dynamics on a picoseconds timescale in a hexagonal Permalloy pattern. Journal of Applied Physics, 2010, 107, 09D302.	1.1	2
132	Imaging Nanoscale Magnetic Structures With Polarized Soft X-Ray Photons. IEEE Photonics Journal, 2010, 2, 260-264.	1.0	4
133	Standing-wave excited soft x-ray photoemission microscopy: Application to Co microdot magnetic arrays. Applied Physics Letters, 2010, 97, .	1.5	24
134	Observation of coupled vortex gyrations by 70-ps-time- and 20-nm-space-resolved full-field magnetic transmission soft x-ray microscopy. Applied Physics Letters, 2010, 97, .	1.5	47
135	Pinning induced by inter-domain wall interactions in planar magnetic nanowires. Applied Physics Letters, 2010, 96, 052502.	1.5	39
136	Switchable Cell Trapping Using Superparamagnetic Beads. IEEE Magnetics Letters, 2010, 1, 1500104-1500104.	0.6	28
137	X-ray imaging the dynamics of nanoscale spin structures. SPIE Newsroom, 2010, , .	0.1	0
138	Direct observation of individual Barkhausen avalanches in nucleation-mediated magnetization reversal processes. Applied Physics Letters, 2009, 95, .	1.5	30
139	Imaging of lateral spin valves with soft x-ray microscopy. Physical Review B, 2009, 80, .	1.1	9
140	Direct Observation of Stochastic Domain-Wall Depinning in Magnetic Nanowires. Physical Review Letters, 2009, 102, 147204.	2.9	122
141	Hydrogen silsesquioxane double patterning process for 12â€,nm resolution x-ray zone plates. Journal of Vacuum Science & Technology B, 2009, 27, 2606.	1.3	30
142	Investigation of early growth of calcium hydroxide crystals in cement solution by soft X-ray transmission microscopy. Journal of Materials Science, 2009, 44, 962-969.	1.7	36
143	Stereo soft Xâ€ray microscopy and elemental mapping of haematite and clay suspensions. Journal of Microscopy, 2009, 235, 199-208.	0.8	13
144	Characterizing the nano and micro structure of concrete to improve its durability. Cement and Concrete Composites, 2009, 31, 577-584.	4.6	91

#	Article	IF	Citations
145	Demonstration of 12 nm Resolution Fresnel Zone Plate Lens based Soft X-ray Microscopy. Optics Express, 2009, 17, 17669.	1.7	248
146	Nonlinear motion of coupled magnetic vortices in ferromagnetic/nonmagnetic/ferromagnetic trilayer. Applied Physics Letters, 2009, 95, 142509.	1.5	19
147	X-ray stereo microscopy for investigation of dynamics in soils. Journal of Physics: Conference Series, 2009, 186, 012104.	0.3	2
148	Direct Realâ€Space Observation of Stochastic Behavior in Domain Nucleation Process on a Nanoscale. Advanced Materials, 2008, 20, 1750-1754.	11.1	26
149	Scaling Behavior of the First Arrival Time of a Random-Walking Magnetic Domain. Physical Review Letters, 2008, 100, 167204.	2.9	12
150	Universal Criterion and Phase Diagram for Switching a Magnetic Vortex Core in Soft Magnetic Nanodots. Physical Review Letters, 2008, 101, 267206.	2.9	104
151	Studying Nanoscale Magnetism and Its Dynamics With Soft X-Ray Microscopy. IEEE Transactions on Magnetics, 2008, 44, 1900-1904.	1.2	20
152	Time-resolved imaging of current-induced domain-wall oscillations. Physical Review B, 2008, 78, .	1.1	47
153	Field driven ferromagnetic phase nucleation and propagation in antiferromagnetically coupled multilayer films with perpendicular anisotropy. Applied Physics Letters, 2008, 93, 042505.	1.5	9
154	Depth-resolved soft x-ray photoelectron emission microscopy in nanostructures via standing-wave excited photoemission. Applied Physics Letters, 2008, 93, .	1.5	24
155	Soft x-ray microscopy. , 2008, , .		0
156	Direct observation of field and temperature induced domain replication in dipolar coupled perpendicular anisotropy films. Physical Review B, 2008, 77, .	1.1	43
157	Influence of interface exchange coupling in perpendicular anisotropy <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml< td=""><td>mtext>Pt</td><td>k/mml:mtext</td></mml<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	mtext>Pt	k/mml:mtext
158	Probing the Spin Polarization of Current by Soft X-Ray Imaging of Current-Induced Magnetic Vortex Dynamics. Physical Review Letters, 2008, 101, 237203.	2.9	56
159	Toward sub-10-nm resolution zone plates using the overlay nanofabrication processes. Proceedings of SPIE, 2008, , .	0.8	6
160	Observation of field-induced domain wall propagation in magnetic nanowires by magnetic transmission x-ray microscopy. Journal of Applied Physics, 2008, 103, .	1.1	11
161	Soft x-ray imaging of spin dynamics at high spatial and temporal resolution. Journal of Vacuum Science & Technology B, 2007, 25, 2598.	1.3	16
162	Magnetization reversal in exchange biased nanocap arrays. Journal Physics D: Applied Physics, 2007, 40, 3005-3010.	1.3	10

#	Article	IF	Citations
163	Towards a deeper insight into strongly correlated electron systemsâ€"the symbiosis between experiment and theory. Journal of Physics Condensed Matter, 2007, 19, 181002.	0.7	O
164	Disorder-induced magnetic memory: Experiments and theories. Physical Review B, 2007, 75, .	1.1	68
165	Exploring nanomagnetism with soft X-ray microscopy. Surface Science, 2007, 601, 4680-4685.	0.8	8
166	Magnetic soft X-ray microscopy: Imaging spin dynamics at the nanoscale. Journal of Magnetism and Magnetic Materials, 2007, 310, 2689-2692.	1.0	15
167	Cobalt antidot arrays on membranes: Fabrication and investigation with transmission X-ray microscopy. Journal of Magnetism and Magnetic Materials, 2007, 316, 99-102.	1.0	12
168	Direct Imaging of Stochastic Domain-Wall Motion Driven by Nanosecond Current Pulses. Physical Review Letters, 2007, 98, 187202.	2.9	220
169	Magnetization reversal in cobalt antidot arrays. Physical Review B, 2006, 73, .	1.1	91
170	Studies of Magnetic Microstructures With Soft X-Ray Transmission Microscopy. IEEE Journal of Quantum Electronics, 2006, 42, 36-43.	1.0	2
171	Single-element objective lens for soft x-ray differential interference contrast microscopy. Optics Letters, 2006, 31, 1564.	1.7	66
172	Soft X-ray microscopy of nanomagnetism. Materials Today, 2006, 9, 26-33.	8.3	104
173	Magnetic microstructures and their dynamics studied by X-ray microscopy. Micron, 2006, 37, 296-300.	1.1	0
174	Real space observation of dipolar interaction in arrays of Fe microelements. Journal of Applied Physics, 2006, 99, 08H301.	1.1	8
175	Photoemission electron microscopy study of remanent magnetic domain states in ferromagnetic wedge films deposited on substrates with micrometer-sized square plateaus. Journal of Applied Physics, 2006, 99, 063904.	1.1	17
176	Magnetic phase contrast X-ray microscopy. , 2006, , .		0
177	Magnetic domains and magnetization reversal of ion-induced magnetically patterned Ruderman-Kittel-Kasuya-Yoshida-coupled Ni81Fe19â^•Ruâ^•Co90Fe10 films. Journal of Applied Physics, 2006, 99, 08G301.	1.1	12
178	Magnetic soft x-ray microscopy at 15 nm resolution probing nanoscale local magnetic hysteresis (invited). Journal of Applied Physics, 2006, 99, 08H3O3.	1.1	45
179	Imaging at High Spatial Resolution: Soft X-Ray Microscopy to 15nm. Journal of Biomedical Nanotechnology, 2006, 2, 75-78.	0.5	16
180	Direct spatial-temporal observation of Barkhausen avalanche in low-dimensional ferromagnetic system (Invited Paper)., 2005,,.		2

#	Article	IF	CITATIONS
181	Magnetization reversal behavior of nanogranular CoCrPt alloy thin films studied with magnetic transmission X-ray microscopy. Journal of Magnetism and Magnetic Materials, 2005, 286, 311-314.	1.0	9
182	Micromagnetic simulation as a bridge between magnetic-force and magnetic-transmission X-ray microscopy. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 723-726.	1.0	2
183	On the imaging of the flux-line lattice of a type-II superconductor by soft X-ray absorption microscopy. Journal of Synchrotron Radiation, 2005, 12, 251-253.	1.0	2
184	Polarization-modulated magnetic soft-x-ray transmission microscopy. Journal of Applied Physics, 2005, 98, 093907.	1.1	11
185	Spatially resolved ferromagnetic resonance: Imaging of ferromagnetic eigenmodes. Journal of Applied Physics, 2005, 97, 10E704.	1.1	90
186	Implementing Subns Time Resolution into Magnetic XRay Microscopies. Physica Scripta, 2005, , 1029.	1.2	1
187	High-resolution imaging of fast magnetization dynamics in magnetic nanostructures. Applied Physics Letters, 2004, 84, 3328-3330.	1.5	144
188	Comparative study of magnetization reversal in isolated and strayfield coupled microcontacts. Applied Physics Letters, 2004, 85, 1193-1195.	1.5	11
189	Imaging sub-ns spin dynamics in magnetic nanostructures with Magnetic Transmission X-ray microscopy. AIP Conference Proceedings, 2004, , .	0.3	O
190	Photoemission electron microscopy investigation of patterned cobalt/Terfenol-D sandwich films. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1311-E1312.	1.0	0
191	X-MCD magnetometry of CMR perovskites La0.67â^'yREyCa0.33MnO3. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 2148-2150.	1.0	2
192	High Resolution Magnetic X-ray Microscopy Study of the Magnetization Reversal in CoCrPt Alloy Thin Films. Journal of Magnetics, 2004, 9, 75-78.	0.2	4
193	Imaging Magnetic Domain Structures with Soft X-Ray Microscopy. Structural Chemistry, 2003, 14, 39-47.	1.0	8
194	Soft Xâ€ray Microcopy at the ALS. Synchrotron Radiation News, 2003, 16, 16-27.	0.2	3
195	Magnetic soft X-ray transmission microscopy. Current Opinion in Solid State and Materials Science, 2003, 7, 173-179.	5.6	23
196	Xâ€ray microscopy at BESSY. Synchrotron Radiation News, 2003, 16, 3-10.	0.2	3
197	Magnetization reversal study of CoCrPt alloy thin films on a nanogranular-length scale using magnetic transmission soft x-ray microscopy. Applied Physics Letters, 2003, 83, 4589-4591.	1.5	21
198	Observation of thermomagnetically recorded domains with high-resolution magnetic soft x-ray microscopy., 2003, 5060, 81.		0

#	Article	IF	CITATIONS
199	Recent progress with high resolution X-ray microscopy at the XM-1. European Physical Journal Special Topics, 2003, 104, 9-9.	0.2	4
200	The magnetic transmission X-ray microscopy project at BESSY II. European Physical Journal Special Topics, 2003, 104, 91-94.	0.2	6
201	Magnetic imaging with soft X-ray microscopies. European Physical Journal Special Topics, 2003, 104, 471-476.	0.2	8
202	X-ray magnetic microscopy for correlations between magnetic domains and crystal structure. European Physical Journal Special Topics, 2003, 104, 477-481.	0.2	2
203	Multilayered magnetic nanostrips studied byÂtransmission X-ray microscopy. European Physical Journal Special Topics, 2003, 104, 483-486.	0.2	0
204	Magnetic imaging with soft X-ray microscopy. IEEE Transactions on Magnetics, 2002, 38, 2427-2431.	1.2	15
205	Undulation instabilities in laterally structured magnetic multilayers. Journal of Applied Physics, 2002, 91, 7334.	1.1	6
206	Study of magnetic domains by magnetic soft x-ray transmission microscopy*. Journal Physics D: Applied Physics, 2002, 35, 2391-2397.	1.3	13
207	Micromagnetic investigation of sub-100-nm magnetic domains in atomically stacked Fe(001)/Au(001) multilayers. Journal of Magnetism and Magnetic Materials, 2002, 240, 79-82.	1.0	4
208	Imaging magnetic microstructures of with soft X-ray microscopies. Transactions of the Magnetics Society of Japan, 2002, 2, 234-237.	0.5	1
209	Magnetic imaging with full-field soft X-ray microscopy. International Journal of Materials Research, 2002, 93, 377-382.	0.8	0
210	X-MCD study of mixed valence manganites. Journal of Alloys and Compounds, 2001, 328, 100-104.	2.8	5
211	High Resolution Imaging of Magnetic Domains with Magnetic Soft X-ray Microscopy Journal of the Magnetics Society of Japan, 2001, 25, 186-191.	0.4	4
212	Transmission X-ray microscopy using X-ray magnetic circular dichroism. Applied Physics A: Materials Science and Processing, 2001, 73, 697-701.	1.1	11
213	Soft X-ray microscopy to 25nm with applications to biology and magnetic materials. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467-468, 841-844.	0.7	42
214	Magnetic domains in nanostructured media studied with M-TXM. Journal of Synchrotron Radiation, 2001, 8, 325-327.	1.0	9
215	Observation of Thermomagnetically Recorded Magnetic Domains in TbFeCo Films with Soft X-Ray Microscopy. Japanese Journal of Applied Physics, 2001, 40, L380-L382.	0.8	0
216	A full field transmission X-ray microscope as a tool for high-resolution magnetic imaging. IEEE Transactions on Magnetics, 2001, 37, 2764-2766.	1.2	15

#	Article	IF	Citations
217	Magnetization reversal of a multilayered FeGd dot array imaged by transmission x-ray microscopy. Journal of Applied Physics, 2001, 89, 7162-7164.	1.1	13
218	Element-specific imaging of magnetic domains at 25 nm spatial resolution using soft x-ray microscopy. Review of Scientific Instruments, 2001, 72, 2322-2324.	0.6	74
219	Study of in-plane magnetic domains with magnetic transmission x-ray microscopy. Journal of Applied Physics, 2001, 89, 7159-7161.	1.1	37
220	Quantitative imaging of magnetization reversal in FeGd multilayers by magnetic transmission x-ray microscopy. Journal of Applied Physics, 2000, 87, 6478-6480.	1.1	14
221	<title>XM-1: the high-resolution soft x-ray microscope at the Advanced Light Source</title> ., 2000,,.		7
222	Imaging magnetic structures with a transmission X-ray microscope. AIP Conference Proceedings, 2000,	0.3	3
223	Imaging of sub-100-nm magnetic domains in atomically stacked Fe(001)/Au(001) multilayers. Journal of Applied Physics, 2000, 87, 6481-6483.	1.1	7
224	Magnetic Domain Imaging with a Transmission X-ray Microscope. Journal of the Magnetics Society of Japan, 1999 , 23 , $S1_205-208$.	0.4	5
225	X-ray magnetic circular dichroism used to image magnetic domains. Journal of Synchrotron Radiation, 1999, 6, 688-690.	1.0	2
226	Magnetic domain imaging with a transmission X-ray microscope. Journal of Magnetism and Magnetic Materials, 1999, 198-199, 624-627.	1.0	16
227	Magnetic transmission X-ray microscopy: imaging magnetic domains via the X-ray magnetic circular dichroism. Journal of Alloys and Compounds, 1999, 286, 20-25.	2.8	14
228	Magnetic X-ray absorption spectroscopy. Journal of Alloys and Compounds, 1999, 286, 37-46.	2.8	12
229	Imaging of magnetic domains by transmission x-ray microscopy. Journal Physics D: Applied Physics, 1998, 31, 649-655.	1.3	67
230	Probing the magnetic microstructure of an amorphous GdFe system with magnetic anomalous small angle x-ray scattering. Journal of Applied Physics, 1998, 83, 7088-7090.	1.1	2
231	X-ray magnetic circular dichroism. Synchrotron Radiation News, 1997, 10, 13-26.	0.2	13
232	New applications of x-ray magnetic circular dichroism., 1997,,.		1
233	Magnetic Small Angle X-Ray Scattering. European Physical Journal Special Topics, 1997, 7, C2-753-C2-755.	0.2	1
234	Imaging of magnetic domains with the X-ray microscope at BESSY using X-ray magnetic circular dichroism. Zeitschrift Fýr Physik B-Condensed Matter, 1997, 101, 313-316.	1.1	104

#	Article	IF	CITATIONS
235	X-RAY MAGNETIC CIRCULAR DICHROISM., 1997,, 341-363.		2
236	X-MCD Study of Expanded Lattice Permanent Magnet Materials. Acta Physica Polonica A, 1997, 91, 975-979.	0.2	2
237	X-Ray Microscopy with X-Ray Magnetic Circular Dichroism. European Physical Journal Special Topics, 1997, 7, C2-467-C2-468.	0.2	1
238	Si Bragg-case transmission phase plate used for the production of circular polarized synchrotron radiation. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 361, 358-363.	0.7	4
239	Xâ€ray magnetic circular dichroism in the near and extended absorption edge structure (invited). Journal of Applied Physics, 1994, 76, 6453-6458.	1.1	22
240	Distribution of magnetic moments in Co/Pt and Co/Pt/Ir/Pt multilayers detected by magnetic x-ray absorption. Journal of Magnetism and Magnetic Materials, 1993, 121, 234-237.	1.0	14
241	Distribution of magnetic moments in Co/Pt and Co/Pt/Ir/Pt multilayers detected by magnetic xâ€fay absorption. Journal of Applied Physics, 1993, 73, 6430-6432.	1.1	36
242	Temperature dependence of the circular magnetic xâ€ray dichroism in the Invar alloy Fe72Pt28. Journal of Applied Physics, 1993, 73, 6063-6065.	1.1	9
243	Magnetic circular xâ€ray dichroism studies of Fe/Tb multilayers. Journal of Applied Physics, 1993, 73, 6910-6912.	1.1	12
244	Magnetic Absorption of Hard X-rays: New Aspects. Japanese Journal of Applied Physics, 1993, 32, 869.	0.8	4
245	Experimental study of the circular magnetic X-ray dichroism in Ho-metal, Ho3Fe5O12, Ho6Fe23 and Ho2Co17. Solid State Communications, 1992, 82, 857-861.	0.9	22
246	Circularly polarized X-rays probing nuclear magnetic moments and magnetism of solids. Zeitschrift FÃ $\frac{1}{4}$ r Physik A, 1992, 341, 227-234.	0.9	4
247	Investigation of the systematics of CMXD at theL2,3edges in (RE)2Co17. Journal of Applied Physics, 1991, 69, 6144-6146.	1.1	30
248	Spin Polarization of PT in Pt/Co Multilayers Studied by X-Ray Absorption. Materials Research Society Symposia Proceedings, 1991, 231, 77.	0.1	9
249	Spinâ€dependent xâ€ray absorption in Co/Pt multilayers. Journal of Applied Physics, 1991, 69, 5655-5657.	1.1	65
250	Spin-dependence of the rare earth L2,3 absorption in (RE)2Co17. Solid State Communications, 1990, 76, 777-781.	0.9	35
251	Soft X-ray microscopy and EUV lithography: imaging in the 20-40 nm regime. , 0, , .		0
252	Dynamic switching of the spin circulation in tapered magnetic nanodisks. , 0, .		1