Wesley James Cantwell

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7096892/wesley-james-cantwell-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

221 8,887 50 86 g-index

229 9,981 4.6 6.39 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
221	In-situ X-ray computed tomography characterization of compaction-creep-recovery response and statistical void analysis of carbon/epoxy prepregs. <i>Composites Communications</i> , 2022 , 31, 101117	6.7	O
220	Crack healing in infusible thermoplastic composite laminates. <i>Composites Part A: Applied Science and Manufacturing</i> , 2022 , 156, 106896	8.4	2
219	Viscoelastic and cyclic compaction response of prepregs tested under isothermal temperatures and various compaction speeds. <i>Polymer Composites</i> , 2021 , 42, 6928	3	2
218	The effect of carbon fibre stitching on the tensile behaviour of secondary bonded single- and double-lap composite joints. <i>Composite Structures</i> , 2021 , 265, 113774	5.3	3
217	Mechanical behaviour of composite laminates repaired with a stitched scarf patch. <i>Composite Structures</i> , 2021 , 255, 112928	5.3	4
216	Single and multi-layer core designs for Pseudo-Ductile failure in honeycomb sandwich structures. <i>Composite Structures</i> , 2021 , 256, 113059	5.3	2
215	Evaluation of the dynamic response of triply periodic minimal surfaces subjected to high strain-rate compression. <i>Additive Manufacturing</i> , 2021 , 46, 102220	6.1	1
214	Energy-absorbing characteristics of hollow-cylindrical hierarchical honeycomb composite tubes inspired a beetle forewing. <i>Composite Structures</i> , 2021 , 278, 114637	5.3	1
213	Multiscale modelling of scaling effects in the impact response of plain woven composites. <i>Composites Part B: Engineering</i> , 2020 , 188, 107885	10	6
212	The blast response of composite and fiber-metal laminate materials 2020 , 415-439		
211	The effect of loading rate on the compression properties of carbon fibre-reinforced epoxy honeycomb structures. <i>Journal of Composite Materials</i> , 2020 , 54, 2565-2576	2.7	5
210	Experimental and numerical characterization of titanium-based fibre metal laminates. <i>Composite Structures</i> , 2020 , 245, 112398	5.3	19
209	Process-induced deformation in U-shaped honeycomb aerospace composite structures. <i>Composite Structures</i> , 2020 , 248, 112503	5.3	14
208	Compressive testing of reinforced Nomex honeycomb at elevated temperatures. <i>Advanced Composite Materials</i> , 2020 , 29, 335-350	2.8	2
207	Process induced deformations in composite sandwich panels using an in-homogeneous layup design. <i>Composites Part A: Applied Science and Manufacturing</i> , 2020 , 137, 106020	8.4	3
206	Creep compaction and IT based permeability measurement of aerospace-grade out-of-life prepregs. <i>Materials Today Communications</i> , 2020 , 25, 101419	2.5	6
205	Processing and out-of-plane properties of composites with embedded graphene paper for EMI shielding applications. <i>Composites Part A: Applied Science and Manufacturing</i> , 2020 , 134, 105901	8.4	10

(2017-2019)

2	204	Application of X-ray computed tomography for the virtual permeability prediction of fiber reinforcements for liquid composite molding processes: A review. <i>Composites Science and Technology</i> , 2019 , 184, 107828	8.6	36	
2	203	The mechanical behaviour of spherical egg-box sandwich structures. <i>Polymer Testing</i> , 2019 , 78, 105954	4.5	11	
2	202	Manufacturing and Performance Evaluation of Carbon Fiber R einforced Honeycombs. <i>Journal of Composites Science</i> , 2019 , 3, 13	3	5	
2	201	In-plane virtual permeability characterization of 3D woven fabrics using a hybrid experimental and numerical approach. <i>Composites Science and Technology</i> , 2019 , 173, 99-109	8.6	40	
2	200	The energy-absorbing characteristics of carbon fiber-reinforced epoxy honeycomb structures. Journal of Composite Materials, 2019 , 53, 1145-1157	2.7	18	
-	199	Blast response of aluminium/thermoplastic polyurethane sandwich panels Experimental work and numerical analysis. <i>International Journal of Impact Engineering</i> , 2019 , 127, 31-40	4	15	
-	198	Energy absorption in aluminium honeycomb cores reinforced with carbon fibre reinforced plastic tubes. <i>Journal of Sandwich Structures and Materials</i> , 2019 , 21, 2801-2815	2.1	9	
-	197	The modelling of impact loading on thermoplastic fibre-metal laminates. <i>Composite Structures</i> , 2018 , 189, 228-238	5.3	21	
-	196	The compressive properties of sandwich structures based on an egg-box core design. <i>Composites Part B: Engineering</i> , 2018 , 144, 143-152	10	15	
1	195	Analysis of the compression behaviour of different composite lattice designs. <i>Journal of Composite Materials</i> , 2018 , 52, 715-729	2.7	7	
-	194	The crushing characteristics of reinforced Nomex honeycomb. <i>Journal of Reinforced Plastics and Composites</i> , 2018 , 37, 1267-1276	2.9	6	
5	193	Damage initiation in composite materials under off-centre impact loading. <i>Polymer Testing</i> , 2018 , 69, 456-461	4.5	11	
-	192	The Mechanical Properties of Corrugated Core Structures Based on Flax Fibre Composites. <i>Current Analytical Chemistry</i> , 2018 , 14, 285-291	1.7	1	
-	191	High-velocity impact deformation and perforation of fibre metal laminates. <i>Journal of Materials Science</i> , 2018 , 53, 4209-4228	4.3	31	
-	190	The energy-absorbing behaviour of composite tube-reinforced foams. <i>Composites Part B:</i> Engineering, 2018 , 139, 227-237	10	37	
-	189	Scaling effects in the manufacture and testing of grid-stiffened composite structures. <i>Journal of Composite Materials</i> , 2018 , 52, 2351-2363	2.7	2	
5	188	The perforation resistance of glass fibre reinforced PEKK composites. <i>Polymer Testing</i> , 2018 , 72, 423-43	1 4.5	12	
-	187	Modeling of the compression behavior of foam cores reinforced with composite rods. <i>Polymer Composites</i> , 2017 , 38, 2301-2311	3	2	

186	Graphene coated piezo-resistive fabrics for liquid composite molding process monitoring. <i>Composites Science and Technology</i> , 2017 , 148, 106-114	8.6	41
185	The mechanical properties of 3D woven composites. <i>Journal of Composite Materials</i> , 2017 , 51, 1703-17	16 .7	41
184	An experimental study of scaling effects in the perforation resistance of woven CFRP laminates. <i>Composite Structures</i> , 2017 , 181, 285-293	5.3	3
183	Transverse permeability of dry fiber preforms manufactured by automated fiber placement. <i>Composites Science and Technology</i> , 2017 , 152, 57-67	8.6	36
182	The energy-absorbing properties of composite tube-reinforced aluminum honeycomb. <i>Composite Structures</i> , 2017 , 176, 630-639	5.3	24
181	Impact on thermoplastic fibre-metal laminates: Experimental observations. <i>Composite Structures</i> , 2017 , 159, 800-817	5.3	40
180	The static and dynamic response of CFRP tube reinforced polyurethane. <i>Composite Structures</i> , 2017 , 161, 85-92	5.3	11
179	An experimental and numerical study on scaling effects in the low velocity impact response of CFRP laminates. <i>Composite Structures</i> , 2016 , 154, 69-78	5.3	28
178	Skin-core debonding in resin-infused sandwich structures. <i>Polymer Composites</i> , 2016 , 37, 2974-2981	3	6
177	Investigation of peel resistance during the fibre placement process. <i>Journal of Reinforced Plastics and Composites</i> , 2016 , 35, 275-286	2.9	20
176	The low velocity impact response of curvilinear-core sandwich structures. <i>International Journal of Impact Engineering</i> , 2016 , 93, 28-38	4	35
175	Scaling effects in the mechanical response of sandwich structures based on corrugated composite cores. <i>Composites Part B: Engineering</i> , 2016 , 93, 88-96	10	27
174	The fabrication and mechanical properties of novel composite lattice structures. <i>Materials and Design</i> , 2016 , 91, 286-293	8.1	24
173	A numerical study of the energy-absorption characteristics of metal tube-reinforced polymer foams. <i>Journal of Sandwich Structures and Materials</i> , 2016 , 18, 597-623	2.1	11
172	Deformation behaviour of steel/SRPP fibre metal laminate characterised by evolution of surface strains. <i>Advances in Aircraft and Spacecraft Science</i> , 2016 , 3, 61-75		5
171	The Low Velocity Impact Response of Nano Modified Composites Manufactured Using Automated Dry Fibre Placement. <i>Polymers and Polymer Composites</i> , 2016 , 24, 233-240	0.8	10
170	The analysis of the ultimate blast failure modes in fibre metal laminates. <i>Composites Science and Technology</i> , 2016 , 135, 1-12	8.6	18
169	An analytical model of the dynamic response of circular composite plates to high-velocity impact. International Journal of Impact Engineering, 2015, 85, 67-82	4	13

(2014-2015)

168	The energy-absorption characteristics of metal tube-reinforced polymer foams. <i>Journal of Sandwich Structures and Materials</i> , 2015 , 17, 74-94	2.1	17	
167	The blast response of composite and fibre-metal laminate materials used in aerospace applications 2015 , 371-391		1	
166	Interfacial fracture of the fibre-metal laminates based on fibre reinforced thermoplastics. <i>Materials & Design</i> , 2015 , 66, 446-452		45	
165	An Evaluation of the Compression Response of High-Performance Prepregs for Afp Applications. <i>Polymers and Polymer Composites</i> , 2015 , 23, 389-398	0.8	2	
164	The energy-absorbing properties of internally reinforced composite-metal cylinders with various diameter-to-thickness ratios. <i>Journal of Reinforced Plastics and Composites</i> , 2015 , 34, 731-741	2.9	8	
163	The influence of strain-rate on the perforation resistance of fiber metal laminates. <i>Composite Structures</i> , 2015 , 125, 247-255	5.3	15	
162	The blast resistance of stitched sandwich panels. <i>International Journal of Impact Engineering</i> , 2014 , 65, 137-145	4	27	
161	The energy-absorbing characteristics of composite tube-reinforced foam structures. <i>Composites Part B: Engineering</i> , 2014 , 61, 127-135	10	46	
160	The impact response of environmental-friendly sandwich structures. <i>Journal of Composite Materials</i> , 2014 , 48, 3083-3090	2.7	9	
159	Geometrical effects in the impact response of the aluminium honeycomb sandwich structures. Journal of Reinforced Plastics and Composites, 2014, 33, 1148-1157	2.9	14	
158	Characterisation of aluminium matrix syntactic foams under drop weight impact. <i>Materials & Design</i> , 2014 , 59, 296-302		55	
157	The energy-absorbing behaviour of foam cores reinforced with composite rods. <i>Composite Structures</i> , 2014 , 116, 346-356	5.3	23	
156	Modelling of perforation failure in fibre metal laminates subjected to high impulsive blast loading. <i>International Journal of Solids and Structures</i> , 2014 , 51, 3135-3146	3.1	46	
155	The response of polymeric composite structures to air-blast loading: a state-of-the-art. <i>International Materials Reviews</i> , 2014 , 59, 159-177	16.1	37	
154	The shear response of lightweight corrugated core structures. <i>Journal of Composite Materials</i> , 2014 , 48, 3785-3798	2.7	3	
153	Characterisation of Aluminium Matrix Syntactic Foams Dynamic Loading. <i>Applied Mechanics and Materials</i> , 2014 , 564, 449-454	0.3	7	
152	The Fracture Properties of Sandwich Structures Based on a Metal Foam Core. <i>Advanced Materials Research</i> , 2014 , 936, 2054-2062	0.5		
151	The energy-absorbing characteristics of polymer foams reinforced with bamboo tubes. <i>Journal of Sandwich Structures and Materials</i> , 2014 , 16, 108-122	2.1	8	

150	Low-velocity impact performance of lattice structure core based sandwich panels. <i>Journal of Composite Materials</i> , 2014 , 48, 3153-3167	2.7	36
149	The mechanical properties of natural fibre based honeycomb core materials. <i>Composites Part B: Engineering</i> , 2014 , 58, 1-9	10	58
148	Skin-core adhesion in high performance sandwich structures. <i>Journal of Zhejiang University: Science A</i> , 2014 , 15, 61-67	2.1	5
147	Autoclave cure simulation of composite structures applying implicit and explicit FE techniques. <i>International Journal of Mechanics and Materials in Design</i> , 2013 , 9, 55-63	2.5	29
146	Active control of a smart composite with shape memory alloy sheet using a plastic optical fiber sensor. <i>Sensors and Actuators A: Physical</i> , 2013 , 201, 182-187	3.9	10
145	Prediction of the mechanical properties of micro-lattice structures subjected to multi-axial loading. International Journal of Mechanical Sciences, 2013, 68, 47-55	5.5	52
144	The mechanical behaviour of corrugated-core sandwich panels. <i>Composites Part B: Engineering</i> , 2013 , 47, 267-277	10	148
143	Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique. <i>International Journal of Mechanical Sciences</i> , 2013 , 67, 28-41	5.5	279
142	Scaling effects in the low velocity impact response of sandwich structures. <i>Composite Structures</i> , 2013 , 99, 97-104	5.3	20
141	Modelling of the low-impulse blast behaviour of fibreThetal laminates based on different aluminium alloys. <i>Composites Part B: Engineering</i> , 2013 , 44, 141-151	10	51
140	Forming studies of carbon fibre composite sheets in dome forming processes. <i>Composite Structures</i> , 2013 , 97, 310-316	5.3	31
139	The impact response of graded foam sandwich structures. <i>Composite Structures</i> , 2013 , 97, 370-377	5.3	84
138	Investigation of the Deformation Behaviour of a Thermoplastic Fibre Metal Laminate. <i>Materials Science Forum</i> , 2013 , 773-774, 503-511	0.4	
137	Damage characterisation on PP-hemp/aluminium fibrefhetal laminates using acoustic emission. <i>Journal of Composite Materials</i> , 2013 , 47, 2265-2274	2.7	7
136	Estimation of Bending Behaviour for Beams Composed of Three-Dimensional Micro-Lattice Cells (Part 1 Based on Numerical Analysis). <i>Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A</i> , 2013 , 79, 620-632		4
135	Strain rate effects in the indentation behavior of foam-based sandwich structures. <i>Journal of Composite Materials</i> , 2012 , 46, 1191-1199	2.7	5
134	The influence of core density on the blast resistance of foam-based sandwich structures. <i>International Journal of Impact Engineering</i> , 2012 , 50, 9-16	4	50
133	The influence of core properties on the perforation resistance of sandwich structures IAn experimental study. <i>Composites Part B: Engineering</i> , 2012 , 43, 3231-3238	10	37

(2010-2012)

132	The low velocity impact response of foam-based sandwich panels. <i>Composites Science and Technology</i> , 2012 , 72, 1781-1790	8.6	102
131	Stretch forming studies on a fibre metal laminate based on a self-reinforcing polypropylene composite. <i>Composite Structures</i> , 2012 , 94, 431-437	5.3	45
130	Low-impulse blast behaviour of fibre-metal laminates. <i>Composite Structures</i> , 2012 , 94, 954-965	5.3	46
129	The Properties of Lattice Structures Manufactured Using Selective Laser Melting. <i>Advanced Materials Research</i> , 2012 , 445, 386-391	0.5	7
128	The high-velocity impact response of thermoplastic flatrix fibre fletal laminates. <i>Journal of Strain Analysis for Engineering Design</i> , 2012 , 47, 432-443	1.3	15
127	Estimation of the compressive and shear responses of three-dimensional micro-lattice structures. <i>Procedia Engineering</i> , 2011 , 10, 2441-2446		4
126	Shear Deformation Response for Three-Dimensional Lattice Structures(2nd Report, Effects of Unit Cell Geometry in a Lattice Structure). <i>Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A</i> , 2011 , 77, 1417-1432		0
125	Modeling perforation in glass fiber reinforced composites subjected to low velocity impact loading. <i>Polymer Composites</i> , 2011 , 32, 1380-1388	3	16
124	Numerical modelling of perforation failure in fibre metal laminates subjected to low velocity impact loading. <i>Composite Structures</i> , 2011 , 93, 2430-2436	5.3	71
123	Comparison on Compressive Behaviour of Aluminium Honeycomb and Titanium Alloy Micro Lattice Blocks. <i>Key Engineering Materials</i> , 2011 , 462-463, 213-218	0.4	5
122	Estimation of the Mechanical Properties of Lightweight Lattice Structures Subjected to Compressive Loading: 3rd Report, Effects of the Constrained Condition along the Edges on the Mechanical Properties of Lattice Structure. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the		1
121	Japan Society of Mechanical Engineers, Part A, 2010 , 76, 860-867 The Mechanical Properties of Sandwich Structures Based on Metal Lattice Architectures. Journal of Sandwich Structures and Materials, 2010 , 12, 159-180	2.1	92
120	The Response of Honeycomb Core Sandwich Panels, with Aluminum and Composite Face Sheets, to Blast Loading. <i>Journal of Sandwich Structures and Materials</i> , 2010 , 12, 733-754	2.1	27
119	Evaluation of the Mechanical Properties of Lightweight Lattice Structures Subjected to Compressive Loading Part I: Analytical Approach for the Initial Stiffness and Plastic Collapse Strength. <i>Journal of Computational Science and Technology</i> , 2010 , 4, 159-171		1
118	Shear Deformation Response for Three-Dimensional Lattice Structures: 1st Report, Effects of Geometry of Overall Lattice Structure. <i>Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A</i> , 2010 , 76, 1557-1564		1
117	Estimation of the Energy Absorption Capacity for BCC Micro-Lattice Structure Subjected to Compressive Loading. <i>Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A</i> , 2010 , 76, 266-273		1
116	Towards a rapid, non-contact shaping method for fibre metal laminates using a laser source. <i>International Journal of Advanced Manufacturing Technology</i> , 2010 , 47, 557-565	3.2	18
115	Impact Response Characterization in Composite Plates Experimental Validation. <i>Applied Composite Materials</i> , 2010 , 17, 463-472	2	15

114	Impact damage initiation in composite materials. Composites Science and Technology, 2010, 70, 336-342	8.6	77
113	The Influence of Loading Rate on the Mode III Fracture Properties of Adhesively Bonded Composites. <i>Journal of Reinforced Plastics and Composites</i> , 2009 , 28, 1999-2012	2.9	5
112	The Influence of Loading Rate on the Mode III Interlaminar Fracture Toughness of Composite/Steel Bi-material Systems. <i>Journal of Composite Materials</i> , 2009 , 43, 2255-2268	2.7	5
111	Mechanical properties of a novel fiberthetal laminate based on a polypropylene composite. <i>Mechanics of Materials</i> , 2009 , 41, 828-838	3.3	92
110	Numerical modeling of the impact response of fiberthetal laminates. <i>Polymer Composites</i> , 2009 , 30, 603-611	3	37
109	Estimation of the Mechanical Properties of Lightweight Lattice Structures Subjected to Compressive Loading: 2nd Report, Effects of the Loading Direction and the Existence of Partially-Complete Cells on the Mechanical Properties of Lattice Structure. Nihon Kikai Gakkai		1
108	Evaluation of the Mechanical Properties of Lightweight Lattice Structures Subjected to Compressive Loading: 1st Report, Analytical Approach for the Initial Stiffness and Plastic Collapse Strength. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical	9	3
107	Engineers, Part A, 2009, 75, 572-579 Scaling Effects in the Low Velocity Impact Response of Fiber-Metal Laminates. <i>Journal of Reinforced Plastics and Composites</i> , 2008, 27, 893-907	2.9	45
106	Investigation of Scaling Effects in FiberMetal Laminates. <i>Journal of Composite Materials</i> , 2008 , 42, 865-8	8 8 87	27
105	The Blast Behavior of Fiber Reinforced Thermoplastic Laminates. <i>Journal of Composite Materials</i> , 2008 , 42, 2275-2297	2.7	31
104	The morphing properties of a smart fiber metal laminate. <i>Polymer Composites</i> , 2008 , 29, 1263-1268	3	10
103	The response of fibre metal laminate panels subjected to uniformly distributed blast loading. <i>European Journal of Mechanics, A/Solids</i> , 2008 , 27, 107-115	3.7	32
102	The quasi-static and blast loading response of lattice structures. <i>International Journal of Impact Engineering</i> , 2008 , 35, 795-810	4	210
101	The Impact Properties of High-temperature Fiber-Metal Laminates. <i>Journal of Composite Materials</i> , 2007 , 41, 613-632	2.7	58
100	Scaling effects in the tensile behavior of fiber-metal laminates. <i>Composites Science and Technology</i> , 2007 , 67, 1684-1693	8.6	34
99	Failure characterisation of blast-loaded fibreThetal laminate panels based on aluminium and glassfibre reinforced polypropylene. <i>Composites Science and Technology</i> , 2007 , 67, 1385-1405	8.6	50
98	Geometrical effects in the low velocity impact response of GFRP. <i>Composites Science and Technology</i> , 2007 , 67, 1900-1908	8.6	49
97	Behaviour of fibreThetal laminates subjected to localised blast loading: Part IExperimental observations. <i>International Journal of Impact Engineering</i> , 2007 , 34, 1202-1222	4	92

96	The fracture properties of a smart fiber metal laminate. <i>Polymer Composites</i> , 2007 , 28, 534-544	3	6
95	Behaviour of fibre metal laminates subjected to localised blast loading Part II: Quantitative analysis. <i>International Journal of Impact Engineering</i> , 2007 , 34, 1223-1245	4	72
94	Localised blast loading of fibrethetal laminates with a polyamide matrix. <i>Composites Part B: Engineering</i> , 2007 , 38, 902-913	10	24
93	Investigation of Strain-rate Effects in Self-reinforced Polypropylene Composites. <i>Journal of Composite Materials</i> , 2007 , 41, 2457-2470	2.7	30
92	The Influence of Strain Rate on the Mode III Interlaminar Fracture of Composite Materials. <i>Journal of Composite Materials</i> , 2007 , 41, 2595-2614	2.7	38
91	The prediction of tensile failure in titanium-based thermoplastic fibrefinetal laminates. <i>Composites Science and Technology</i> , 2006 , 66, 2306-2316	8.6	107
90	Structureproperties relations in titanium-based thermoplastic fiberthetal laminates. <i>Polymer Composites</i> , 2006 , 27, 264-270	3	25
89	The impact resistance of fiberthetal laminates based on glass fiber reinforced polypropylene. <i>Polymer Composites</i> , 2006 , 27, 700-708	3	24
88	The impact resistance of polypropylene-based fibrefinetal laminates. <i>Composites Science and Technology</i> , 2006 , 66, 1682-1693	8.6	148
87	The development of a finite element model for simulating the stamp forming of fibrefinetal laminates. <i>Composite Structures</i> , 2006 , 75, 298-304	5.3	33
86	Drawing behaviour of metal@omposite sandwich structures. <i>Composite Structures</i> , 2006 , 75, 305-312	5.3	85
85	Understanding the behaviour of fibre metal laminates subjected to localised blast loading. <i>Composite Structures</i> , 2006 , 76, 82-87	5.3	24
84	Stamp forming of polypropylene based fibrethetal laminates: The effect of process variables on formability. <i>Journal of Materials Processing Technology</i> , 2006 , 172, 163-168	5.3	70
83	The effect of process temperature on the formability of polypropylene based fibrethetal laminates. <i>Composites Part A: Applied Science and Manufacturing</i> , 2005 , 36, 1158-1166	8.4	55
82	Low-velocity Impact Response of High-performance Aluminum Foam Sandwich Structures. <i>Journal of Reinforced Plastics and Composites</i> , 2005 , 24, 1057-1072	2.9	30
81	The fracture properties of a fibrethetal laminate based on magnesium alloy. <i>Composites Part B:</i> Engineering, 2005 , 37, 163-170	10	110
80	Process monitoring of aluminum-foam sandwich structures based on thermoplastic fibrethetal laminates using fibre Bragg gratings. <i>Composites Science and Technology</i> , 2005 , 65, 669-676	8.6	17
79	Damage monitoring in aluminum-foam sandwich structures based on thermoplastic fibre-metal laminates using fibre Bragg gratings. <i>Composites Science and Technology</i> , 2005 , 65, 1800-1807	8.6	16

78	The blast response of novel thermoplastic-based fibre-metal laminates \$\mathbb{L}\$ ome preliminary results and observations. <i>Composites Science and Technology</i> , 2005 , 65, 861-872	8.6	62
77	The Tensile and Fatigue Properties of Carbon Fiber-reinforced PEEK-Titanium Fiber-metal Laminates. <i>Journal of Reinforced Plastics and Composites</i> , 2004 , 23, 1615-1623	2.9	71
76	The high velocity impact response of composite and FML-reinforced sandwich structures. <i>Composites Science and Technology</i> , 2004 , 64, 35-54	8.6	154
75	The impact response of aluminum foam sandwich structures based on a glass fiber-reinforced polypropylene fiber-metal laminate. <i>Polymer Composites</i> , 2004 , 25, 499-509	3	27
74	The use of plastic optical fibre sensors for monitoring the dynamic response of fibre composite beams. <i>Measurement Science and Technology</i> , 2003 , 14, 736-745	2	34
73	The use of plastic optical fibres and shape memory alloys for damage assessment and damping control in composite materials. <i>Measurement Science and Technology</i> , 2003 , 14, 1305-1313	2	31
72	Low velocity impact response of novel fiber-reinforced aluminum foam sandwich structures. <i>Journal of Materials Science Letters</i> , 2003 , 22, 417-422		21
71	The low velocity impact response of an aluminium honeycomb sandwich structure. <i>Composites Part B: Engineering</i> , 2003 , 34, 679-687	10	146
70	Plastic Optical Fibre Sensors for Environmental Monitoring: Biofouling and Strain Applications. <i>Strain</i> , 2003 , 39, 115-119	1.7	21
69	Crack detection and vertical deflection monitoring in concrete beams using plastic optical fibre sensors. <i>Measurement Science and Technology</i> , 2003 , 14, 205-216	2	62
68	Use of conventional optical fibers and fiber Bragg gratings for damage detection in advanced composite structures: A review. <i>Applied Mechanics Reviews</i> , 2003 , 56, 493-513	8.6	89
67	The low velocity impact response of foam-based sandwich structures. <i>Composites Part B:</i> Engineering, 2002 , 33, 193-204	10	180
66	The effect of moisture and loading rate on the interfacial fracture properties of sandwich structures. <i>Polymer Composites</i> , 2002 , 23, 406-417	3	21
65	Real-Time damage detection in thermoplastic-based composite materials with embedded multi-mode optical fiber sensors. <i>Polymer Composites</i> , 2002 , 23, 603-618	3	3
64	The influence of cooling rate on the fracture properties of a glass reiforced/nylon fiber-metal laminate. <i>Polymer Composites</i> , 2002 , 23, 839-851	3	10
63	. Journal of Materials Science Letters, 2002 , 21, 263-266		4
62	Detection of impact damage in thermoplastic-based fiber-metal laminates using optical fiber sensors. <i>Journal of Materials Science Letters</i> , 2002 , 21, 1351-1354		2
61	Interfacial fracture properties of carbon fiber reinforced PEEK/titanium fiber-metal laminates. Journal of Materials Science Letters, 2002 , 21, 1819-1823		8

60	The Influence of Cooling Rate on the Fracture Properties of a Thermoplastic-Based Fibre-Metal Laminate. <i>Journal of Reinforced Plastics and Composites</i> , 2002 , 21, 749-772	2.9	29
59	In situprocess monitoring of a thermoplastic-based fibre composite using optical fibre sensors. <i>Smart Materials and Structures</i> , 2002 , 11, 840-847	3.4	7
58	An evaluation of a novel plastic optical fibre sensor for axial strain and bend measurements. <i>Measurement Science and Technology</i> , 2002 , 13, 1523-1534	2	139
57	Embedded fibre Bragg grating sensors in advanced composite materials. <i>Composites Science and Technology</i> , 2001 , 61, 1379-1387	8.6	168
56	The effect of temperature and loading rate on the mode II interlaminar fracture properties of a carbon fiber reinforced phenolic. <i>Polymer Composites</i> , 2001 , 22, 165-173	3	4
55	Temperature and loading rate effects in the mode II interlaminar fracture behavior of carbon fiber reinforced PEEK. <i>Polymer Composites</i> , 2001 , 22, 271-281	3	19
54	Impact perforation resistance and fracture mechanisms of a thermoplastic based fiber-metal laminate. <i>Journal of Materials Science Letters</i> , 2001 , 20, 597-599		52
53	Impact damage characterization on jute reinforced composites. <i>Journal of Materials Science Letters</i> , 2001 , 20, 477-479		12
52	The interfacial fracture toughness of a polyamide-based fiber-metal laminate bonded with an ionomer resin. <i>Journal of Materials Science Letters</i> , 2001 , 20, 509-512		7
51	Residual strain measurement and impact response of optical fibre Bragg grating sensors in fibre metal laminates. <i>Smart Materials and Structures</i> , 2001 , 10, 338-346	3.4	46
50	The mechanical properties of fibre-metal laminates based on glass fibre reinforced polypropylene. <i>Composites Science and Technology</i> , 2000 , 60, 1085-1094	8.6	172
49	The fracture properties of novel aluminum foam sandwich structures. <i>Journal of Materials Science Letters</i> , 2000 , 19, 2205-2208		24
48	Adhesive bonding and wettability of plasma treated, glass fiber-reinforced nylon-6,6 composites. Journal of Materials Science Letters, 2000 , 19, 1829-1832		15
47	A new test geometry for characterizing skin-core adhesion in thin-skinned sandwich structures. Journal of Materials Science Letters, 2000 , 19, 1365-1367		9
46	Plasma Surface Modification of Glass Fibre-Reinforced Nylon-6,6 Thermoplastic Composites for Improved Adhesive Bonding. <i>Journal of Materials Science</i> , 2000 , 8, 363-373		28
45	Effect of surface treatment on mode I interlaminar fracture behaviour of plain glass woven fabric composites: Part I. Report of the 2nd round-robin test results. <i>Composite Interfaces</i> , 2000 , 7, 227-242	2.3	14
44	Interfacial fracture in sandwich laminates. Composites Science and Technology, 1999, 59, 2079-2085	8.6	79
43	The Static and Dynamic Response of CFRP-Strengthened Concrete Structures. <i>Journal of Materials Science Letters</i> , 1999 , 18, 309-310		17

42	A Simple Catapult System for Studying the Small Projectile Impact Resistance of Various Glass Laminates. <i>Journal of Testing and Evaluation</i> , 1999 , 27, 177	1	4
41	THE DAMAGE THRESHOLD OF LAMINATED GLASS STRUCTURES. <i>International Journal of Impact Engineering</i> , 1998 , 21, 737-746	4	39
40	Interfacial Fracture in Fibre-Metal Laminates Based on Glass Fibre Reinforced Polypropylene. <i>Advanced Composites Letters</i> , 1998 , 7, 096369359800700	1.2	7
39	Viscoelastic Creep Crack Growth: A Review of Fracture Mechanical Analyses. <i>Mechanics of Time-Dependent Materials</i> , 1997 , 1, 241-268	1.2	38
38	Rate effects in the fracture of glass fibre chopped strand mat composites. <i>Composites Part B: Engineering</i> , 1997 , 28, 635-640	10	4
37	Split rate fatigue propagation in polymer blends. <i>Polymer Bulletin</i> , 1995 , 34, 243-248	2.4	4
36	The influence of network structure on the macroscopic mechanical properties of crosslinked polymers. <i>Macromolecular Symposia</i> , 1995 , 93, 317-324	0.8	4
35	A test technique for assessing core-skin adhesion in composite sandwich structures. <i>Journal of Materials Science Letters</i> , 1994 , 13, 203-205		64
34	Fracture of glass/polypropylene laminates: influence of cooling rate after moulding. <i>Composites</i> , 1994 , 25, 869-877		50
33	An evaluation of the interlaminar fracture toughness of a thermoplastic composite with offset centre flies. <i>Mechanics of Composite Materials</i> , 1993 , 28, 328-333	1.1	3
32	The Influence of a Fiber-Matrix Coupling Agent on the Properties of a Glass Fiber / Polypropylene GMT. <i>Journal of Thermoplastic Composite Materials</i> , 1992 , 5, 304-317	1.9	22
31	The significance of damage and defects and their detection in composite materials: A review. <i>Journal of Strain Analysis for Engineering Design</i> , 1992 , 27, 29-42	1.3	120
30	Study of the crystal morphology and the deformation behaviour of carbon fibre reinforced PEEK (APC-2). <i>Composites Science and Technology</i> , 1992 , 43, 299-306	8.6	15
29	An analysis of the impact response of a composite beam. <i>Composites Part B: Engineering</i> , 1991 , 1, 293-3	07	3
28	Effect of forming temperature on the mode I delamination resistance of carbon fibre-poly(ethylethyl ketone). <i>Journal of Materials Science Letters</i> , 1991 , 10, 640-642		3
27	Joining and repair of a carbon fibre-reinforced thermoplastic. <i>Composites</i> , 1991 , 22, 425-431		36
26	The impact resistance of composite materials 🗈 review. <i>Composites</i> , 1991 , 22, 347-362		935
25	High speed crack propagation in bi-phase materials: an experimental study. <i>International Journal of Fracture</i> , 1991 , 50, 67-77	2.3	4

24	Impact perforation of carbon fibre reinforced plastic. Composites Science and Technology, 1990, 38, 119-1	8461	149
23	Delamination from thin starter films in carbon fibre/PEEK composites. <i>Journal of Materials Science Letters</i> , 1990 , 9, 1349-1350		11
22	The effect of annealing on the short and long term behavior of PEEK. <i>Polymer Bulletin</i> , 1990 , 24, 657-664	೬ .4	13
21	An assessment of the residual strength of an impact-damaged carbon fibre reinforced epoxy. Composite Structures, 1990 , 14, 303-317	5.3	17
20	The effect of cooling rate on deformation and fracture in IM6/PEEK composites. <i>Composite Structures</i> , 1990 , 14, 151-171	5.3	38
19	Thermal joining of carbon fibre reinforced PEEK laminates. <i>Composite Structures</i> , 1990 , 16, 305-321	5.3	11
18	The influence of varying projectile mass on the impact response of CFRP. <i>Composite Structures</i> , 1989 , 13, 101-114	5.3	79
17	Measurement of initiation values of GIC in IM6/PEEK composites. <i>Composites Science and Technology</i> , 1989 , 35, 301-313	8.6	36
16	Thermal bonding of carbon fibre PEEK composites. <i>Journal of Materials Science Letters</i> , 1989 , 8, 1035-103	39	7
15	Geometrical effects in the low velocity impact response of CFRP. Composite Structures, 1989 , 12, 39-59	5.3	108
14	A study of the delamination resistance of IM6/PEEK composites. <i>Composites Science and Technology</i> , 1989 , 36, 153-166	8.6	56
13	Healing of cracks in carbon fibre-PEEK composites. <i>Journal of Materials Science Letters</i> , 1989 , 8, 1247-124	18	8
12	Crack velocity measurements in fibre-reinforced composites. <i>Composites</i> , 1989 , 20, 389-391		1
11	Comparison of the low and high velocity impact response of cfrp. <i>Composites</i> , 1989 , 20, 545-551		234
10	Dynamic crack propagation in the double-torsion test geometry. <i>Journal of Materials Science Letters</i> , 1988 , 7, 976-980		10
9	The influence of fibre stacking sequence on the high velocity impact response of CFRP. <i>Journal of Materials Science Letters</i> , 1988 , 7, 756-758		8
8	The influence of target geometry on the high velocity impact response of CFRP. <i>Composite Structures</i> , 1988 , 10, 247-265	5.3	53
7	Fast fracture in epoxy resins. <i>International Journal of Fracture</i> , 1987 , 35, R31-R39	2.3	6

6	Parameters determining the strength and toughness of particulate-filled epoxy resins. <i>Polymer Composites</i> , 1987 , 8, 314-323	3	46
5	An assessment of the impact performance of CFRP reinforced with high-strain carbon fibres. <i>Composites Science and Technology</i> , 1986 , 25, 133-148	8.6	90
4	Detection of impact damage in CFRP laminates. <i>Composite Structures</i> , 1985 , 3, 241-257	5.3	116
3	Impact and subsequent fatigue damage growth in carbon fibre laminates. <i>International Journal of Fatigue</i> , 1984 , 6, 113-118	5	37
2	Post-impact fatigue performance of carbon fibre laminates with non-woven and mixed-woven layers. <i>Composites</i> , 1983 , 14, 301-305		64
1	The energy-absorbing characteristics of tubular sandwich structures. <i>Journal of Sandwich Structures and Materials</i> ,109963622110204	2.1	1