Gerd M Seibold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7096547/publications.pdf

Version: 2024-02-01

48 1,490 21 37 g-index

56 56 56 56 1366

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Online estimation of changing metabolic capacities in continuous <i>Corynebacterium glutamicum</i> cultivations growing on a complex sugar mixture. Biotechnology and Bioengineering, 2022, 119, 575-590.	1.7	5
2	Umwandlung von <i>Escherichia coli </i> /i>Proteomembranen in artifizielle Chloroplasten durch molekulare Photokatalyse. Angewandte Chemie, 2022, 134, .	1.6	2
3	Recombinant production of the lantibiotic nisin using Corynebacterium glutamicum in a two-step process. Microbial Cell Factories, 2022, $21,11.$	1.9	13
4	Transforming < i > Escherichia coli < /i > Proteomembranes into Artificial Chloroplasts Using Molecular Photocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
5	Visualizing the pH in Escherichia coli Colonies via the Sensor Protein mCherryEA Allows High-Throughput Screening of Mutant Libraries. MSystems, 2022, 7, e0021922.	1.7	6
6	Digital models in biotechnology: Towards multi-scale integration and implementation. Biotechnology Advances, 2022, 60, 108015.	6.0	14
7	Evolving a New Efficient Mode of Fructose Utilization for Improved Bioproduction in Corynebacterium glutamicum. Frontiers in Bioengineering and Biotechnology, 2021, 9, 669093.	2.0	7
8	Comparison of noninvasive, in-situ and external monitoring of microbial growth in fed-batch cultivations in Corynebacterium glutamicum. Biochemical Engineering Journal, 2021, 170, 107989.	1.8	5
9	Switching the Mechanism of NADH Photooxidation by Supramolecular Interactions. Chemistry - A European Journal, 2021, 27, 16840-16845.	1.7	11
10	Metabolic Engineering of Corynebacterium glutamicum for Production of UDP-N-Acetylglucosamine. Frontiers in Bioengineering and Biotechnology, 2021, 9, 748510.	2.0	9
11	Establishing recombinant production of pediocin PA-1 in Corynebacterium glutamicum. Metabolic Engineering, 2021, 68, 34-45.	3.6	15
12	Impedance flow cytometry for viability analysis of Corynebacterium glutamicum. Journal of Microbiological Methods, 2021, 191, 106347.	0.7	5
13	Angicin, a novel bacteriocin of Streptococcus anginosus. Scientific Reports, 2021, 11, 24377.	1.6	7
14	The Industrial Organism Corynebacterium glutamicum Requires Mycothiol as Antioxidant to Resist Against Oxidative Stress in Bioreactor Cultivations. Antioxidants, 2020, 9, 969.	2.2	10
15	Time-resolved ATP measurements during vesicle respiration. Talanta, 2019, 205, 120083.	2.9	6
16	Characterization of the biofilm phenotype of a Listeria monocytogenes mutant deficient in agr peptide sensing. MicrobiologyOpen, 2019, 8, e00826.	1.2	20
17	A simple dual-inducible CRISPR interference system for multiple gene targeting in Corynebacterium glutamicum. Plasmid, 2019, 103, 25-35.	0.4	28
18	Substrateâ€dependent cluster density dynamics of Corynebacterium glutamicum phosphotransferase system permeases. Molecular Microbiology, 2019, 111, 1335-1354.	1.2	8

#	Article	IF	Citations
19	Construction of pOGOduet – An inducible, bicistronic vector for synthesis of recombinant proteins in Corynebacterium glutamicum. Plasmid, 2018, 95, 11-15.	0.4	11
20	<i>Corynebacterium glutamicum</i> Chassis C1*: Building and Testing a Novel Platform Host for Synthetic Biology and Industrial Biotechnology. ACS Synthetic Biology, 2018, 7, 132-144.	1.9	63
21	Intracellular pHluorin as Sensor for Easy Assessment of Bacteriocin-Induced Membrane-Damage in Listeria monocytogenes. Frontiers in Microbiology, 2018, 9, 3038.	1.5	14
22	Real Time Monitoring of NADPH Concentrations in Corynebacterium glutamicum and Escherichia coli via the Genetically Encoded Sensor mBFP. Frontiers in Microbiology, 2018, 9, 2564.	1.5	30
23	Production of the compatible solute α-d-glucosylglycerol by metabolically engineered Corynebacterium glutamicum. Microbial Cell Factories, 2018, 17, 94.	1.9	21
24	Coupling Molecular Photocatalysis to Enzymatic Conversion. ChemCatChem, 2017, 9, 4369-4376.	1.8	15
25	Chassis organism from Corynebacterium glutamicum – Genome reduction as a tool toward improved strains for synthetic biology and industrial biotechnology. New Biotechnology, 2016, 33, S25.	2.4	1
26	Transcription of Sialic Acid Catabolism Genes in Corynebacterium glutamicum Is Subject to Catabolite Repression and Control by the Transcriptional Repressor NanR. Journal of Bacteriology, 2016, 198, 2204-2218.	1.0	12
27	The α-Glucan Phosphorylase MalP of Corynebacterium glutamicum Is Subject to Transcriptional Regulation and Competitive Inhibition by ADP-Glucose. Journal of Bacteriology, 2015, 197, 1394-1407.	1.0	10
28	Chassis organism from <i>Corynebacterium glutamicum</i> â€" a topâ€down approach to identify and delete irrelevant gene clusters. Biotechnology Journal, 2015, 10, 290-301.	1.8	102
29	Transcription of malP is subject to phosphotransferase system-dependent regulation in Corynebacterium glutamicum. Microbiology (United Kingdom), 2015, 161, 1830-1843.	0.7	6
30	Protein <i>S-</i> Mycothiolation Functions as Redox-Switch and Thiol Protection Mechanism in <i>Corynebacterium glutamicum</i> Under Hypochlorite Stress. Antioxidants and Redox Signaling, 2014, 20, 589-605.	2.5	68
31	Engineering of Corynebacterium glutamicum for growth and l-lysine and lycopene production from N-acetyl-glucosamine. Applied Microbiology and Biotechnology, 2014, 98, 5633-5643.	1.7	60
32	Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2013, 97, 1679-1687.	1.7	91
33	Phosphotransferase System-Mediated Glucose Uptake Is Repressed in Phosphoglucoisomerase-Deficient Corynebacterium glutamicum Strains. Applied and Environmental Microbiology, 2013, 79, 2588-2595.	1.4	39
34	Inactivation of the phosphoglucomutase gene <i>pgm</i> in <i>Corynebacterium glutamicum</i> affects cell shape and glycogen metabolism. Bioscience Reports, 2013, 33, .	1.1	15
35	Maltose Uptake by the Novel ABC Transport System MusEFGK ₂ I Causes Increased Expression of <i>ptsG</i> in Corynebacterium glutamicum. Journal of Bacteriology, 2013, 195, 2573-2584.	1.0	19
36	Arabitol Metabolism of Corynebacterium glutamicum and Its Regulation by AtlR. Journal of Bacteriology, 2012, 194, 941-955.	1.0	32

3

#	Article	IF	CITATIONS
37	Phosphotransferase System-Independent Glucose Utilization in Corynebacterium glutamicum by Inositol Permeases and Glucokinases. Applied and Environmental Microbiology, 2011, 77, 3571-3581.	1.4	103
38	Impact of a new glucose utilization pathway in amino acid-producingCorynebacterium glutamicum. Bioengineered Bugs, 2011, 2, 291-295.	2.0	25
39	The glgB-encoded glycogen branching enzyme is essential for glycogen accumulation in Corynebacterium glutamicum. Microbiology (United Kingdom), 2011, 157, 3243-3251.	0.7	20
40	Carbohydrate metabolism in Corynebacterium glutamicum and applications for the metabolic engineering of l-lysine production strains. Applied Microbiology and Biotechnology, 2010, 86, 1313-1322.	1.7	102
41	Increased Glucose Utilization in <i>Corynebacterium glutamicum</i> by Use of Maltose, and Its Application for the Improvement of <scp>I</scp> -Valine Productivity. Applied and Environmental Microbiology, 2010, 76, 370-374.	1.4	48
42	Link between Phosphate Starvation and Glycogen Metabolism in <i>Corynebacterium glutamicum</i> , Revealed by Metabolomics. Applied and Environmental Microbiology, 2010, 76, 6910-6919.	1.4	33
43	The transcriptional regulators RamA and RamB are involved in the regulation of glycogen synthesis in Corynebacterium glutamicum. Microbiology (United Kingdom), 2010, 156, 1256-1263.	0.7	21
44	Roles of maltodextrin and glycogen phosphorylases in maltose utilization and glycogen metabolism in Corynebacterium glutamicum. Microbiology (United Kingdom), 2009, 155, 347-358.	0.7	38
45	The glgX gene product of Corynebacterium glutamicum is required for glycogen degradation and for fast adaptation to hyperosmotic stress. Microbiology (United Kingdom), 2007, 153, 2212-2220.	0.7	61
46	Glycogen formation in Corynebacterium glutamicum and role of ADP-glucose pyrophosphorylase. Microbiology (United Kingdom), 2007, 153, 1275-1285.	0.7	49
47	Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: Growth and lysine production. Journal of Biotechnology, 2006, 124, 381-391.	1.9	122
48	Real-time PCR quantification of bacterial adhesion to Caco-2 cells: Competition between bifidobacteria and enteropathogens. Research in Microbiology, 2005, 156, 887-895.	1.0	69