
Ryan C Hayward

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/709654/publications.pdf Version: 2024-02-01

RVAN C HAVWARD

#	Article	IF	CITATIONS
1	Designing Responsive Buckled Surfaces by Halftone Gel Lithography. Science, 2012, 335, 1201-1205.	6.0	727
2	Using origami design principles to fold reprogrammable mechanical metamaterials. Science, 2014, 345, 647-650.	6.0	714
3	General Predictive Syntheses of Cubic, Hexagonal, and Lamellar Silica and Titania Mesostructured Thin Films§. Chemistry of Materials, 2002, 14, 3284-3294.	3.2	666
4	Electrophoretic assembly of colloidal crystals with optically tunable micropatterns. Nature, 2000, 404, 56-59.	13.7	561
5	Tailored Assemblies of Block Copolymers in Solution: It Is All about the Process. Macromolecules, 2010, 43, 3577-3584.	2.2	474
6	Surface Wrinkles for Smart Adhesion. Advanced Materials, 2008, 20, 711-716.	11.1	451
7	Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nature Materials, 2015, 14, 389-393.	13.3	382
8	Programming Reversibly Selfâ€Folding Origami with Micropatterned Photoâ€Crosslinkable Polymer Trilayers. Advanced Materials, 2015, 27, 79-85.	11.1	381
9	Shape-Morphing Materials from Stimuli-Responsive Hydrogel Hybrids. Accounts of Chemical Research, 2017, 50, 161-169.	7.6	360
10	Shear Rheology of Lyotropic Liquid Crystals: A Case Study. Langmuir, 2005, 21, 3322-3333.	1.6	317
11	Creasing instability of surface-attached hydrogels. Soft Matter, 2008, 4, 564.	1.2	247
12	Dynamic display of biomolecular patterns throughÂanÂelastic creasing instability of stimuli-responsive hydrogels. Nature Materials, 2010, 9, 159-164.	13.3	241
13	Hierarchical Helical Assembly of Conjugated Poly(3-hexylthiophene)- <i>block</i> -poly(3-triethylene) Tj ETQq1 1 C).784314 6.6	rgBT /Overlo 207
14	Spontaneous Generation of Amphiphilic Block Copolymer Micelles with Multiple Morphologies through Interfacial Instabilities. Journal of the American Chemical Society, 2008, 130, 7496-7502.	6.6	191
15	lonoelastomer junctions between polymer networks of fixed anions and cations. Science, 2020, 367, 773-776.	6.0	188
16	Poroelastic swelling kinetics of thin hydrogel layers: comparison of theory and experiment. Soft Matter, 2010, 6, 6004.	1.2	186
17	Thermally responsive rolling of thin gel strips with discrete variations in swelling. Soft Matter, 2012, 8, 2375.	1.2	179
18	Ordering and Melting of Block Copolymer Spherical Domains in 2 and 3 Dimensions. Macromolecules, 2003, 36, 3272-3288.	2.2	161

#	Article	IF	CITATIONS
19	Dewetting Instability during the Formation of Polymersomes from Block-Copolymer-Stabilized Double Emulsions. Langmuir, 2006, 22, 4457-4461.	1.6	155
20	Enhancement of anhydrous proton transport by supramolecular nanochannels in comb polymers. Nature Chemistry, 2010, 2, 503-508.	6.6	148
21	Solvent-Driven Evolution of Block Copolymer Morphology under 3D Confinement. Macromolecules, 2010, 43, 7807-7812.	2.2	127
22	Photothermally Reprogrammable Buckling of Nanocomposite Gel Sheets. Angewandte Chemie - International Edition, 2015, 54, 5434-5437.	7.2	126
23	Creasing instability of elastomer films. Soft Matter, 2012, 8, 1301-1304.	1.2	114
24	Blueprinting Photothermal Shapeâ€Morphing of Liquid Crystal Elastomers. Advanced Materials, 2020, 32, e2000609.	11.1	110
25	Hierarchically Structured Microparticles Formed by Interfacial Instabilities of Emulsion Droplets Containing Amphiphilic Block Copolymers. Angewandte Chemie - International Edition, 2008, 47, 2113-2116.	7.2	108
26	Kinetically Trapped Co-continuous Polymer Morphologies through Intraphase Gelation of Nanoparticles. Nano Letters, 2011, 11, 1997-2003.	4.5	107
27	Mimicking dynamic in vivo environments with stimuli-responsive materials for cell culture. Trends in Biotechnology, 2012, 30, 426-439.	4.9	103
28	Stimuli-responsive buckling mechanics of polymer films. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1441-1461.	2.4	98
29	Structure of a Surfactant-Templated Silicate Framework in the Absence of 3D Crystallinity. Journal of the American Chemical Society, 2004, 126, 9425-9432.	6.6	96
30	Photonic Multilayer Sensors from Photo rosslinkable Polymer Films. Advanced Materials, 2012, 24, 6100-6104.	11.1	95
31	Gelation of Copolymers with Pendent Benzophenone Photo-Cross-Linkers. Macromolecules, 2012, 45, 5237-5246.	2.2	92
32	Particles with Tunable Porosity and Morphology by Controlling Interfacial Instability in Block Copolymer Emulsions. ACS Nano, 2016, 10, 5243-5251.	7.3	92
33	Effect of Polymer Chain Folding on the Transition from H- to J-Aggregate Behavior in P3HT Nanofibers. Journal of Physical Chemistry C, 2014, 118, 2229-2235.	1.5	91
34	3D-Printed Self-Folding Electronics. ACS Applied Materials & amp; Interfaces, 2017, 9, 32290-32298.	4.0	90
35	Waveguiding Microactuators Based on a Photothermally Responsive Nanocomposite Hydrogel. Advanced Functional Materials, 2016, 26, 5447-5452.	7.8	84
36	Multifunctional Nanoparticle‣oaded Spherical and Wormlike Micelles Formed by Interfacial Instabilities. Advanced Materials, 2012, 24, 2735-2741.	11.1	83

#	Article	IF	CITATIONS
37	Using Janus Nanoparticles To Trap Polymer Blend Morphologies during Solvent-Evaporation-Induced Demixing. Macromolecules, 2015, 48, 4220-4227.	2.2	81
38	Tuning Innate Immune Activation by Surface Texturing of Polymer Microparticles: The Role of Shape in Inflammasome Activation. Journal of Immunology, 2013, 190, 3525-3532.	0.4	79
39	Multiaddressable Photochromic Architectures: From Molecules to Materials. Advanced Optical Materials, 2019, 7, 1900224.	3.6	78
40	Nucleation, growth, and hysteresis of surface creases on swelled polymer gels. Soft Matter, 2010, 6, 5807.	1.2	77
41	Local Switching of Chemical Patterns through Lightâ€Triggered Unfolding of Creased Hydrogel Surfaces. Angewandte Chemie - International Edition, 2012, 51, 7146-7149.	7.2	77
42	Swelling-driven rolling and anisotropic expansion of striped gel sheets. Soft Matter, 2013, 9, 8264.	1.2	77
43	Tuning the assembly of amphiphilic block copolymers through instabilities of solvent/water interfaces in the presence of aqueous surfactants. Soft Matter, 2009, 5, 2471.	1.2	73
44	Crosslinked Poly(styrene)-block-Poly(2-vinylpyridine) Thin Films as Swellable Templates for Mesostructured Silica and Titania. Advanced Materials, 2005, 17, 2591-2595.	11.1	72
45	Surface Creasing Instability of Soft Polyacrylamide Cell Culture Substrates. Biophysical Journal, 2010, 99, L94-L96.	0.2	72
46	Grayscale gel lithography for programmed buckling of non-Euclidean hydrogel plates. Soft Matter, 2016, 12, 4985-4990.	1.2	72
47	Template Cross-Linking Effects on Morphologies of Swellable Block Copolymer and Mesostructured Silica Thin Films. Macromolecules, 2005, 38, 7768-7783.	2.2	71
48	Surface Energy as a Barrier to Creasing of Elastomer Films: An Elastic Analogy to Classical Nucleation. Physical Review Letters, 2012, 109, 038001.	2.9	71
49	Thermally Reversible Aggregation of Gold Nanoparticles in Polymer Nanocomposites through Hydrogen Bonding. Nano Letters, 2013, 13, 5297-5302.	4.5	67
50	Geometrically controlled snapping transitions in shells with curved creases. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11175-11180.	3.3	67
51	Growth of Polythiophene/Perylene Tetracarboxydiimide Donor/Acceptor Shish-Kebab Nanostructures by Coupled Crystal Modification. ACS Nano, 2012, 6, 10924-10929.	7.3	65
52	Liquid Crystal Elastomer Waveguide Actuators. Advanced Materials, 2019, 31, e1901216.	11.1	62
53	A nonlinear beam model of photomotile structures. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9762-9770.	3.3	60
54	Excluded-Volume Effects in Polymer Solutions. 2. Comparison of Experimental Results with Numerical Simulation Data. Macromolecules, 1999, 32, 3510-3517.	2.2	59

#	Article	IF	CITATIONS
55	Nanocomposite "Superhighways―by Solution Assembly of Semiconductor Nanostructures with Ligandâ€Functionalized Conjugated Polymers. Advanced Materials, 2012, 24, 2254-2258.	11.1	59
56	Osmotically Driven Formation of Double Emulsions Stabilized by Amphiphilic Block Copolymers. Angewandte Chemie - International Edition, 2014, 53, 8240-8245.	7.2	59
57	Wide Bicontinuous Compositional Windows from Co-Networks Made with Telechelic Macromonomers. ACS Nano, 2014, 8, 12376-12385.	7.3	58
58	Characterization of Heterogeneous Polyacrylamide Hydrogels by Tracking of Single Quantum Dots. Macromolecules, 2014, 47, 741-749.	2.2	57
59	Lightâ€Driven Shape Morphing, Assembly, and Motion of Nanocomposite Gel Surfers. Advanced Materials, 2019, 31, e1900932.	11.1	57
60	The current role of mesostructures in composite materials and device fabrication. Microporous and Mesoporous Materials, 2001, 44-45, 619-624.	2.2	56
61	Probing Inter- and Intrachain Exciton Coupling in Isolated Poly(3-hexylthiophene) Nanofibers: Effect of Solvation and Regioregularity. Journal of Physical Chemistry Letters, 2012, 3, 1674-1679.	2.1	55
62	Mechanically Gated Electrical Switches by Creasing of Patterned Metal/Elastomer Bilayer Films. Advanced Materials, 2014, 26, 4381-4385.	11.1	55
63	Reconfiguring Nanocomposite Liquid Crystal Polymer Films with Visible Light. Macromolecules, 2016, 49, 1575-1581.	2.2	55
64	Thin Films of Bicontinuous Cubic Mesostructured Silica Templated by a Nonionic Surfactant. Langmuir, 2004, 20, 5998-6004.	1.6	54
65	Cross-Linked Conjugated Polymer Fibrils: Robust Nanowires from Functional Polythiophene Diblock Copolymers. Chemistry of Materials, 2011, 23, 4250-4256.	3.2	54
66	Wormlike Micelles with Microphase-Separated Cores from Blends of Amphiphilic AB and Hydrophobic BC Diblock Copolymers. Macromolecules, 2008, 41, 7794-7797.	2.2	53
67	Reconfigurable Microscale Frameworks from Concatenated Helices with Controlled Chirality. Advanced Materials, 2017, 29, 1606111.	11.1	53
68	Lowâ€Voltage Reversible Electroadhesion of Ionoelastomer Junctions. Advanced Materials, 2020, 32, e2000600.	11.1	52
69	Single-Crystal Mesoporous Silica Ribbons. Angewandte Chemie - International Edition, 2005, 44, 332-336.	7.2	50
70	Polymer Zwitterions for Stabilization of CsPbBr ₃ Perovskite Nanoparticles and Nanocomposite Films. Angewandte Chemie - International Edition, 2020, 59, 10802-10806.	7.2	49
71	Photomechanical molecular crystals and nanowire assemblies based on the [2+2] photodimerization of a phenylbutadiene derivative. Journal of Materials Chemistry C, 2020, 8, 5036-5044.	2.7	49
72	Interfacial tension of evaporating emulsion droplets containing amphiphilic block copolymers: Effects of solvent and polymer composition. Journal of Colloid and Interface Science, 2012, 365, 275-279.	5.0	48

#	Article	IF	CITATIONS
73	Bifurcation Diagrams for the Formation of Wrinkles or Creases in Soft Bilayers. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .	1.1	48
74	The role of substrate pre-stretch in post-wrinkling bifurcations. Soft Matter, 2014, 10, 6520.	1.2	46
75	Reversible Actuation via Photoisomerization-Induced Melting of a Semicrystalline Poly(Azobenzene). ACS Macro Letters, 2020, 9, 902-909.	2.3	46
76	Excluded Volume Effects in Polymer Solutions. 1. Dilute Solution Properties of Linear Chains in Good and Ï [¢] Solvents. Macromolecules, 1999, 32, 3502-3509.	2.2	44
77	Triplet–Triplet Annihilation Photopolymerization for High-Resolution 3D Printing. Journal of the American Chemical Society, 2022, 144, 5226-5232.	6.6	44
78	Assembly of Poly(3-hexylthiophene)/CdSe Hybrid Nanowires by Cocrystallization. Macromolecules, 2011, 44, 1768-1770.	2.2	40
79	Biasing Buckling Direction in Shapeâ€Programmable Hydrogel Sheets with Throughâ€Thickness Gradients. Advanced Functional Materials, 2019, 29, 1905273.	7.8	39
80	Fabrication of Coâ€continuous Nanostructured and Porous Polymer Membranes: Spinodal Decomposition of Homopolymer and Random Copolymer Blends. Angewandte Chemie - International Edition, 2012, 51, 4089-4094.	7.2	38
81	Edge-defined metric buckling of temperature-responsive hydrogel ribbons and rings. Polymer, 2014, 55, 5908-5914.	1.8	38
82	Light-induced shape morphing of thin films. Current Opinion in Colloid and Interface Science, 2019, 40, 70-86.	3.4	38
83	Lowâ€Voltage Switching of Crease Patterns on Hydrogel Surfaces. Advanced Materials, 2013, 25, 5555-5559.	11.1	35
84	Tailoring Ultrasound-Induced Growth of Perylene Diimide Nanowire Crystals from Solution by Modification with Poly(3-hexyl thiophene). ACS Nano, 2015, 9, 1878-1885.	7.3	35
85	Nanoparticle‣tabilized Double Emulsions and Compressed Droplets. Angewandte Chemie - International Edition, 2012, 51, 145-149.	7.2	34
86	Selective Nucleation of Poly(3-hexyl thiophene) Nanofibers on Multilayer Graphene Substrates. ACS Macro Letters, 2015, 4, 483-487.	2.3	34
87	Photocrosslinkable Nanocomposite Multilayers for Responsive 1D Photonic Crystals. Advanced Functional Materials, 2016, 26, 722-728.	7.8	34
88	Controlled formation and disappearance of creases. Materials Horizons, 2014, 1, 207-213.	6.4	32
89	Creases on the interface between two soft materials. Soft Matter, 2014, 10, 303-311.	1.2	32
90	Enabling Robust Selfâ€Folding Origami by Preâ€Biasing Vertex Buckling Direction. Advanced Materials, 2019, 31, e0193006.	11.1	32

#	Article	IF	CITATIONS
91	Functional polymers for growth and stabilization of CsPbBr ₃ perovskite nanoparticles. Chemical Communications, 2019, 55, 1833-1836.	2.2	32
92	Water Processable Polythiophene Nanowires by Photo-Cross-Linking and Click-Functionalization. Nano Letters, 2015, 15, 5689-5695.	4.5	31
93	Fluorescence imaging of nanoscale domains in polymer blends using stochastic optical reconstruction microscopy (STORM). Optics Express, 2014, 22, 8438.	1.7	30
94	Tunable Upper Critical Solution Temperature of Poly(<i>N</i> -isopropylacrylamide) in Ionic Liquids for Sequential and Reversible Self-Folding. ACS Applied Materials & Interfaces, 2017, 9, 15785-15790.	4.0	30
95	Mesostructured Silica/Block Copolymer Composites as Hosts for Optically Limiting Tetraphenylporphyrin Dye Molecules. Journal of Physical Chemistry B, 2004, 108, 11909-11914.	1.2	29
96	Functional Sulfobetaine Polymers: Synthesis and Salt-Responsive Stabilization of Oil-in-Water Droplets. Macromolecules, 2015, 48, 7843-7850.	2.2	29
97	Proton conduction in discotic mesogens. Chemical Communications, 2011, 47, 5566-5568.	2.2	28
98	Reversible Electrochemically Triggered Delamination Blistering of Hydrogel Films on Micropatterned Electrodes. Advanced Functional Materials, 2016, 26, 3218-3225.	7.8	28
99	Post-wrinkle bifurcations in elastic bilayers with modest contrast in modulus. Extreme Mechanics Letters, 2017, 11, 30-36.	2.0	28
100	Photothermocapillary Oscillators. Physical Review Letters, 2018, 121, 158001.	2.9	27
101	Anisotropic and Interconnected Nanoporous Materials from Randomly End-Linked Copolymer Networks. Macromolecules, 2017, 50, 4668-4676.	2.2	26
102	Measuring the Elastic Modulus of Thin Polymer Sheets by Elastocapillary Bending. ACS Applied Materials & Interfaces, 2015, 7, 14734-14742.	4.0	25
103	Formation of high aspect ratio wrinkles and ridges on elastic bilayers with small thickness contrast. Soft Matter, 2018, 14, 8545-8551.	1.2	24
104	Reconfiguring Gaussian Curvature of Hydrogel Sheets with Photoswitchable Host–Guest Interactions. ACS Macro Letters, 2020, 9, 1172-1177.	2.3	24
105	Kinetic stabilities of bis-terpyridine complexes with iron(ii) and cobalt(ii) in organic solvent environments. Journal of Materials Chemistry, 2012, 22, 21366.	6.7	23
106	Forming Sticky Droplets from Slippery Polymer Zwitterions. Advanced Materials, 2017, 29, 1702921.	11.1	23
107	Bridging photochemistry and photomechanics with NMR crystallography: the molecular basis for the macroscopic expansion of an anthracene ester nanorod. Chemical Science, 2021, 12, 453-463.	3.7	23
108	lon transport properties of mechanically stable symmetric ABCBA pentablock copolymers with quaternary ammonium functionalized midblock. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 612-622.	2.4	21

#	Article	IF	CITATIONS
109	Substituent effects on the stabilities of polymeric and small molecule bis-terpyridine complexes. Polymer Chemistry, 2012, 3, 1221.	1.9	20
110	Programmable and reversible assembly of soft capillary multipoles. Materials Horizons, 2017, 4, 228-235.	6.4	20
111	Effects of Stiff Film Pattern Geometry on Surface Buckling Instabilities of Elastic Bilayers. ACS Applied Materials & Interfaces, 2018, 10, 23406-23413.	4.0	20
112	Reversible, Self Cross-Linking Nanowires from Thiol-Functionalized Polythiophene Diblock Copolymers. ACS Applied Materials & Interfaces, 2014, 6, 7705-7711.	4.0	19
113	Shapeâ€Changing Particles: From Materials Design and Mechanisms to Implementation. Advanced Materials, 2022, 34, e2105758.	11.1	19
114	Elastocapillary Crease. Physical Review Letters, 2019, 122, 098003.	2.9	18
115	Orthogonal Ambipolar Semiconductor Nanostructures for Complementary Logic Gates. ACS Nano, 2016, 10, 8610-8619.	7.3	17
116	Overcurvature induced multistability of linked conical frusta: how a â€~bendy straw' holds its shape. Soft Matter, 2018, 14, 8636-8642.	1.2	17
117	Coupled oscillation and spinning of photothermal particles in Marangoni optical traps. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
118	Photopatternable Biodegradable Aliphatic Polyester with Pendent Benzophenone Groups. Biomacromolecules, 2015, 16, 3329-3335.	2.6	16
119	Creased hydrogels as active platforms for mechanical deformation of cultured cells. Lab on A Chip, 2015, 15, 1160-1167.	3.1	15
120	Multiblock Copolymer Anion-Exchange Membranes Derived from Vinyl Addition Polynorbornenes. ACS Applied Energy Materials, 2021, 4, 10273-10279.	2.5	15
121	Temperature sensing using junctions between mobile ions and mobile electrons. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	15
122	Effects of Randomly End-Linked Copolymer Network Parameters on the Formation of Disordered Cocontinuous Phases. Macromolecules, 2019, 52, 2642-2650.	2.2	14
123	Polymer Zwitterions for Stabilization of CsPbBr ₃ Perovskite Nanoparticles and Nanocomposite Films. Angewandte Chemie, 2020, 132, 10894-10898.	1.6	14
124	Nonuniform growth and topological defects in the shaping of elastic sheets. Soft Matter, 2014, 10, 6382-6386.	1.2	13
125	Simultaneous control of Gaussian curvature and buckling direction by swelling of asymmetric trilayer hydrogel hybrids. Soft Matter, 2020, 16, 688-694.	1.2	13
126	Architectural Effects on Solution Self-Assembly of Poly(3-hexylthiophene)-Based Graft Copolymers. ACS Applied Materials & Interfaces, 2017, 9, 2933-2941.	4.0	12

#	Article	IF	CITATIONS
127	Stress-Induced Orientation of Cocontinuous Nanostructures within Randomly End-Linked Copolymer Networks. ACS Macro Letters, 2018, 7, 828-833.	2.3	11
128	Ring-Opening Polymerization of Allyl-Functionalized Lactams. Macromolecules, 2019, 52, 167-175.	2.2	11
129	Impact of Composition and Placement of Hydrogen-Bonding Groups along Polymer Chains on Blend Phase Behavior: Coarse-Grained Molecular Dynamics Simulation Study. Macromolecules, 2022, 55, 2675-2690.	2.2	11
130	Control of internal (2D and 3D hexagonal) mesostructure and particle morphology of spherical mesoporous silica particles using the emulsion and solvent evaporation (ESE) method. Microporous and Mesoporous Materials, 2009, 120, 359-367.	2.2	9
131	Synthesis of End-Functionalized Polystyrene by Direct Nucleophilic Addition of Polystyryllithium to Bipyridine or Terpyridine. Macromolecules, 2010, 43, 3249-3255.	2.2	9
132	Measuring the five elastic constants of a nematic liquid crystal elastomer. Liquid Crystals, 2021, 48, 511-520.	0.9	9
133	Random photografting of polymers to nanoparticles for wellâ€dispersed nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 152-158.	2.4	7
134	Orthogonal Ambipolar Semiconductors with Inherently Multi-Dimensional Responses for the Discriminative Sensing of Chemical Vapors. ACS Applied Materials & Interfaces, 2018, 10, 33353-33359.	4.0	7
135	Tuning Metastability of Poly(3-hexyl thiophene) Solutions to Enable in Situ Atomic Force Microscopy Imaging of Surface Nucleation. Macromolecules, 2019, 52, 7756-7761.	2.2	7
136	Assembly of Disordered Cocontinuous Morphologies by Multiblock Copolymers with Random Block Sequence and Length Dispersity. ACS Applied Polymer Materials, 2020, 2, 3282-3290.	2.0	7
137	Complex Coacervation of Polymerized Ionic Liquids in Non-aqueous Solvents. ACS Polymers Au, 2021, 1, 100-106.	1.7	7
138	Patterning Nanoparticles into Rings by "2-D Pickering Emulsionsâ€: ACS Applied Materials & Interfaces, 2014, 6, 4850-4855.	4.0	5
139	Robust polythiophene nanowires cross-linked with functional fullerenes. Journal of Materials Chemistry C, 2014, 2, 9674-9682.	2.7	5
140	Harnessing Multiple Surface Deformation Modes for Switchable Conductivity Surfaces. ACS Applied Materials & Interfaces, 2020, 12, 10031-10038.	4.0	5
141	Focusing frustration for self-limiting assembly of flexible, curved particles. Physical Review Research, 2022, 4, .	1.3	5
142	Assembly of P3HT/CdSe nanowire networks in an insulating polymer host. Soft Matter, 2018, 14, 5327-5332.	1.2	4
143	Photonic polymer multilayers for colorimetric radiation sensing. Sensors and Actuators B: Chemical, 2015, 208, 85-89.	4.0	3
144	Formation of rolls from liquid crystal elastomer bistrips. Soft Matter, 2022, 18, 4077-4089.	1.2	2

#	Article	IF	CITATIONS
145	Photomechanical Structures Based on Porous Alumina Templates Filled with 9-Methylanthracene Nanowires. Crystals, 2022, 12, 808.	1.0	1
146	Promoting Network Formation in Nanorod-filled Binary Blends. Materials Research Society Symposia Proceedings, 2012, 1411, 75.	0.1	0