
Andrey S Gnedenkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7096049/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Localized corrosion of the Mg alloys with inhibitor-containing coatings: SVET and SIET studies. Corrosion Science, 2016, 102, 269-278.	6.6	100
2	Protective properties of inhibitor-containing composite coatings on a Mg alloy. Corrosion Science, 2016, 102, 348-354.	6.6	96
3	Composite polymer-containing protective coatings on magnesium alloy MA8. Corrosion Science, 2014, 85, 52-59.	6.6	86
4	Composite fluoropolymer coatings on the MA8 magnesium alloy surface. Corrosion Science, 2016, 111, 175-185.	6.6	69
5	Increasing thickness and protective properties of PEO-coatings on aluminum alloy. Surface and Coatings Technology, 2018, 334, 29-42.	4.8	69
6	PEO-coating/substrate interface investigation by localised electrochemical impedance spectroscopy. Surface and Coatings Technology, 2010, 205, 1697-1701.	4.8	65
7	Hard wearproof PEO-coatings formed on Mg alloy using TiN nanoparticles. Applied Surface Science, 2020, 503, 144062.	6.1	61
8	Smart composite antibacterial coatings with active corrosion protection of magnesium alloys. Journal of Magnesium and Alloys, 2022, 10, 3589-3611.	11.9	52
9	Protective composite coatings obtained by plasma electrolytic oxidation on magnesium alloy MA8. Vacuum, 2015, 120, 107-114.	3.5	47
10	Localized currents and pH distribution studied during corrosion of MA8 Mg alloy in the cell culture medium. Corrosion Science, 2020, 170, 108689.	6.6	47
11	Control of the Mg alloy biodegradation via PEO and polymer-containing coatings. Corrosion Science, 2021, 182, 109254.	6.6	46
12	Magnesium fabricated using additive technology: Specificity of corrosion and protection. Journal of Alloys and Compounds, 2019, 808, 151629.	5.5	40
13	The detailed corrosion performance of bioresorbable Mg-0.8Ca alloy in physiological solutions. Journal of Magnesium and Alloys, 2022, 10, 1326-1350.	11.9	40
14	Features of the corrosion processes development at the magnesium alloys surface. Surface and Coatings Technology, 2013, 225, 112-118.	4.8	38
15	Bioactive Coatings Formed on Titanium by Plasma Electrolytic Oxidation: Composition and Properties. Materials, 2020, 13, 4121.	2.9	34
16	Composite coatings formed using plasma electrolytic oxidation and fluoroparaffin materials. Journal of Alloys and Compounds, 2018, 767, 353-360.	5.5	32
17	Atmospheric and Marine Corrosion of PEO and Composite Coatings Obtained on Al-Cu-Mg Aluminum Alloy. Materials, 2020, 13, 2739.	2.9	30
18	Electrochemical behaviour of the MA8 Mg alloy in minimum essential medium. Corrosion Science, 2020, 168, 108552.	6.6	30

ANDREY S GNEDENKOV

#	Article	IF	CITATIONS
19	Plasma Electrolytic Oxidation Coatings on Titanium Formed with Microsecond Current Pulses. Solid State Phenomena, 2014, 213, 149-153.	0.3	29
20	Corrosion of the Welded Aluminium Alloy in 0.5 M NaCl Solution. Part 1: Specificity of Development. Materials, 2018, 11, 2053.	2.9	29
21	Corrosion of the Welded Aluminium Alloy in 0.5 M NaCl Solution. Part 2: Coating Protection. Materials, 2018, 11, 2177.	2.9	26
22	Effect of Microstructure on the Corrosion Resistance of TIG Welded 1579 Alloy. Materials, 2019, 12, 2615.	2.9	26
23	Composite Protective Coatings on Nitinol Surface. Materials and Manufacturing Processes, 2008, 23, 879-883.	4.7	25
24	Inhibitor-Containing Composite Coatings on Mg Alloys: Corrosion Mechanism and Self-Healing Protection. Solid State Phenomena, 0, 245, 89-96.	0.3	25
25	Influence of plasma electrolytic oxidation on mechanical characteristics of NiTi alloy. Surface Engineering, 2009, 25, 565-569.	2.2	23
26	Microscale morphology and properties of the PEO-coating surface. Physics Procedia, 2012, 23, 98-101.	1.2	22
27	Features of the Magnesium Alloys Corrosion in the Chloride-Containing Media. Solid State Phenomena, 0, 213, 143-148.	0.3	22
28	Icephobic Performance of Combined Fluorine-Containing Composite Layers on Al-Mg-Mn–Si Alloy Surface. Polymers, 2021, 13, 3827.	4.5	19
29	Influence of Formation Conditions on Corrosion Behavior of PEO-Coatings during Salt-Spray Test. Solid State Phenomena, 0, 312, 319-324.	0.3	2
30	Self-healing effect of the protective inhibitor-containing coatings on Mg alloys. AIP Conference Proceedings, 2017, , .	0.4	1
31	Electrochemical studies of the composite polymer-containing coating on the 1579 aluminium alloy with welded joint. IOP Conference Series: Materials Science and Engineering, 2018, 369, 012015.	0.6	1
32	Localized Corrosion and Microstructure of the Aircraft Aluminium Alloy. Key Engineering Materials, 2019, 806, 64-69.	0.4	1
33	Formation of Protective Coatings on AMg3 Aluminum Alloy Using Fluoropolymer Nanopowder. Solid State Phenomena, 0, 312, 330-334.	0.3	1
34	Composite polymer-containing coatings on Mg alloys perspective for industry and implant surgery. AIP Conference Proceedings, 2017, , .	0.4	0
35	Microstructure and properties of bulk pure magnesium fabricated by direct laser deposition. , 2019, , .		0
36	Morphology and Chemical Composition of Organic Coatings Formed Atop PEO-Layers. Solid State Phenomena, 0, 312, 325-329.	0.3	0

0

#	Article	IF	CITATIONS
37	PEO Coated Porous Mg/HAp Implant Materials Impregnated with Bioactive Components. Solid State Phenomena, 0, 312, 366-371.	0.3	0

Localized Corrosion Degradation of Bioresorbable Mg Alloys Promising for Medicine. , 2021, 6, .