Parasuraman Swaminathan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7095381/publications.pdf

Version: 2024-02-01

566801 610482 34 585 15 24 citations h-index g-index papers 35 35 35 611 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Printable Silver Nanowire and PEDOT:PSS Nanocomposite Ink for Flexible Transparent Conducting Applications. ACS Applied Electronic Materials, 2020, 2, 1000-1010.	2.0	65
2	Studying exothermic reactions in the Ni-Al system at rapid heating rates using a nanocalorimeter. Journal of Applied Physics, $2013,113,113$	1.1	59
3	Top-down synthesis of zinc oxide based inks for inkjet printing. RSC Advances, 2017, 7, 39411-39419.	1.7	50
4	A review of silver nanowire-based composites for flexible electronic applications. Flexible and Printed Electronics, 2022, 7, 014009.	1.5	42
5	Optical calibration for nanocalorimeter measurements. Thermochimica Acta, 2011, 522, 60-65.	1.2	31
6	Direct writing of silver nanowire-based ink for flexible transparent capacitive touch pad. Flexible and Printed Electronics, 2019, 4, 045001.	1.5	30
7	Anodic Aluminum Oxide Template Assisted Synthesis of Copper Nanowires using a Galvanic Displacement Process for Electrochemical Denitrification. ACS Applied Nano Materials, 2019, 2, 5981-5988.	2.4	28
8	Silver Nanowire-Based Printable Electrothermochromic Ink for Flexible Touch-Display Applications. ACS Applied Materials & Display Applications.	4.0	27
9	Formulation and optimization of a zinc oxide nanoparticle ink for printed electronics applications. Flexible and Printed Electronics, 2018, 3, 015001.	1.5	23
10	Dynamics of solidification in Al thin films measured using a nanocalorimeter. Journal of Applied Physics, 2011, 110, .	1.1	22
11	Modeling and quantitative nanocalorimetric analysis to assess interdiffusion in a Ni/Al bilayer. Journal of Applied Physics, 2011, 110, .	1.1	21
12	Solid-state dewetting-mediated aggregation of nanoparticles. Physical Review B, 2008, 77, .	1.1	19
13	Spark plasma sintering route to synthesize aluminium doped zinc oxide. RSC Advances, 2016, 6, 86586-86596.	1.7	17
14	Metal oxide heterojunctions using a printable nickel oxide ink. RSC Advances, 2020, 10, 3951-3959.	1.7	17
15	Reduction in the Band Gap of Manganese-Doped Zinc Oxide: Role of the Oxidation State. Journal of Electronic Materials, 2015, 44, 4710-4716.	1.0	16
16	Anomalous photoluminescence behavior from amorphous Ge quantum dots produced by buffer-layer-assisted growth. Applied Physics Letters, 2007, 90, 011903.	1.5	15
17	Cd-based II-VI semiconductor nanostructures produced by buffer-layer-assisted growth: Structural evolution and photoluminescence. Physical Review B, 2006, 73, .	1.1	14
18	Photoresponse of a printed transparent silver nanowire-zinc oxide nanocomposite. Flexible and Printed Electronics, 2021, 6, 045004.	1.5	13

#	Article	IF	CITATIONS
19	Size dependence of nanoparticle dissolution in a matrix: Gold in bismuth. Physical Review B, 2009, 79, .	1.1	10
20	Role of silver nanoparticles in the dewetting behavior of copper thin films. Thin Solid Films, 2017, 642, 364-369.	0.8	10
21	Photoluminescence of CdSe quantum dots and rods from buffer-layer-assisted growth. Applied Physics Letters, 2006, 88, 121906.	1.5	8
22	Fabrication of silica nanopillars by templated etching using bimetallic nanoparticles for anti-reflection applications. Applied Surface Science, 2018, 456, 915-922.	3.1	8
23	Induced magnetism in Cu nanoparticles embedded in Co. Applied Physics Letters, 2007, 91, 202506.	1.5	7
24	Effect of processing route on the structural and functional properties of manganese doped zinc oxide. Materials Chemistry and Physics, 2021, 261, 124206.	2.0	7
25	Competition between particle formation and burrowing: Gold on bismuth. Physical Review B, 2008, 78,	1.1	5
26	Templated electroless nickel deposition for patterning applications. Surface and Coatings Technology, 2019, 370, 106-112.	2.2	5
27	Microstructure tailoring of tungsten oxide for enhanced properties by varying sintering temperatures. Materials Letters, 2022, 316, 132007.	1.3	5
28	The effects of buffer structure in buffer-layer-assisted growth: Grain boundaries, grooves, and pattern transfer. Surface Science, 2005, 595, 64-72.	0.8	3
29	Non-Linear Electrical Behaviour of ZnO-NiO Composites Prepared by Solid-State Synthesis. Journal of Electronic Materials, 2022, 51, 2298-2307.	1.0	3
30	Reactive Bilayers by Self-activated Electroless Nickel-Phosphorous Deposition on Pure Aluminum. Jom, 2021, 73, 574-579.	0.9	2
31	Effect of nanoparticles on the dewetting of bismuth films. Surface Engineering, 2021, 37, 406-413.	1.1	1
32	Annealing-induced changes in optoelectronic properties of sputtered copper oxide films. Journal of Materials Science: Materials in Electronics, 2022, 33, 13539-13546.	1.1	1
33	Nanoparticle aggregation due to dewetting of sandwiched buffer layers. Surface Science, 2008, 602, 2816-2818.	0.8	O
34	Planar Printed E-Field Sensor Array for Microwave NDE of Composites. Lecture Notes in Mechanical Engineering, 2021, , 219-228.	0.3	O