List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7095363/publications.pdf Version: 2024-02-01

MIKE HEILEMANN

#	Article	IF	CITATIONS
1	Subdiffractionâ€Resolution Fluorescence Imaging with Conventional Fluorescent Probes. Angewandte Chemie - International Edition, 2008, 47, 6172-6176.	7.2	1,659
2	Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nature Protocols, 2011, 6, 991-1009.	5.5	935
3	A Reducing and Oxidizing System Minimizes Photobleaching and Blinking of Fluorescent Dyes. Angewandte Chemie - International Edition, 2008, 47, 5465-5469.	7.2	538
4	Carbocyanine Dyes as Efficient Reversible Single-Molecule Optical Switch. Journal of the American Chemical Society, 2005, 127, 3801-3806.	6.6	388
5	Superâ€Resolution Imaging with Small Organic Fluorophores. Angewandte Chemie - International Edition, 2009, 48, 6903-6908.	7.2	386
6	Reconfigurable, braced, three-dimensional DNA nanostructures. Nature Nanotechnology, 2008, 3, 93-96.	15.6	356
7	Single-Molecule Localization Microscopy in Eukaryotes. Chemical Reviews, 2017, 117, 7478-7509.	23.0	337
8	Full length RTN3 regulates turnover of tubular endoplasmic reticulum via selective autophagy. ELife, 2017, 6, .	2.8	319
9	Live-cell super-resolution imaging with trimethoprim conjugates. Nature Methods, 2010, 7, 717-719.	9.0	315
10	Democratising deep learning for microscopy with ZeroCostDL4Mic. Nature Communications, 2021, 12, 2276.	5.8	295
11	Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. Journal of Cell Science, 2012, 125, 570-575.	1.2	285
12	Live-Cell Super-Resolution Imaging with Synthetic Fluorophores. Annual Review of Physical Chemistry, 2012, 63, 519-540.	4.8	262
13	Photoswitches: Key molecules for subdiffractionâ€resolution fluorescence imaging and molecular quantification. Laser and Photonics Reviews, 2009, 3, 180-202.	4.4	247
14	Realâ€ŧime computation of subdiffractionâ€ŧesolution fluorescence images. Journal of Microscopy, 2010, 237, 12-22.	0.8	217
15	A simple method to estimate the average localization precision of a single-molecule localization microscopy experiment. Histochemistry and Cell Biology, 2014, 141, 629-638.	0.8	200
16	Multistep Energy Transfer in Single Molecular Photonic Wires. Journal of the American Chemical Society, 2004, 126, 6514-6515.	6.6	192
17	Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging. Photochemical and Photobiological Sciences, 2011, 10, 499-506.	1.6	190
18	Coordinate-based colocalization analysis of single-molecule localization microscopy data. Histochemistry and Cell Biology, 2012, 137, 1-10.	0.8	171

#	Article	IF	CITATIONS
19	Multiscale Spatial Organization of RNA Polymerase in Escherichia coli. Biophysical Journal, 2013, 105, 172-181.	0.2	166
20	One, two or three? Probing the stoichiometry of membrane proteins by single-molecule localization microscopy. Scientific Reports, 2015, 5, 14072.	1.6	148
21	Quantitative single-molecule microscopy reveals that CENP-A ^{Cnp1} deposition occurs during G2 in fission yeast. Open Biology, 2012, 2, 120078.	1.5	145
22	Linear ubiquitination of cytosolic Salmonella Typhimurium activates NF-κB and restricts bacterial proliferation. Nature Microbiology, 2017, 2, 17066.	5.9	145
23	Super-Resolution Microscopy Reveals Specific Recruitment of HIV-1 Envelope Proteins to Viral Assembly Sites Dependent on the Envelope C-Terminal Tail. PLoS Pathogens, 2013, 9, e1003198.	2.1	131
24	Real-Time Analysis and Visualization for Single-Molecule Based Super-Resolution Microscopy. PLoS ONE, 2013, 8, e62918.	1.1	123
25	The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging. Journal of Biotechnology, 2010, 149, 260-266.	1.9	121
26	Universal quenching of common fluorescent probes by water and alcohols. Chemical Science, 2021, 12, 1352-1362.	3.7	120
27	Super-resolution Imaging Reveals the Internal Architecture of Nano-sized Syntaxin Clusters. Journal of Biological Chemistry, 2012, 287, 27158-27167.	1.6	116
28	Multicolor photoswitching microscopy for subdiffraction-resolution fluorescence imaging. Photochemical and Photobiological Sciences, 2009, 8, 465-469.	1.6	114
29	Multiâ€colour <i>direct</i> STORM with red emitting carbocyanines. Biology of the Cell, 2012, 104, 229-237.	0.7	111
30	Whole-Cell, 3D, and Multicolor STED Imaging with Exchangeable Fluorophores. Nano Letters, 2019, 19, 500-505.	4.5	110
31	Fluorescence microscopy beyond the diffraction limit. Journal of Biotechnology, 2010, 149, 243-251.	1.9	108
32	High-Resolution Colocalization of Single Dye Molecules by Fluorescence Lifetime Imaging Microscopy. Analytical Chemistry, 2002, 74, 3511-3517.	3.2	107
33	Extracting quantitative information from single-molecule super-resolution imaging data with LAMA – LocAlization Microscopy Analyzer. Scientific Reports, 2016, 6, 34486.	1.6	103
34	Photoswitching microscopy with standard fluorophores. Applied Physics B: Lasers and Optics, 2008, 93, 725-731.	1.1	102
35	Monitoring multiple distances within a single molecule using switchable FRET. Nature Methods, 2010, 7, 831-836.	9.0	99
36	Super-resolution fluorescence imaging of chromosomal DNA. Journal of Structural Biology, 2012, 177, 344-348.	1.3	98

#	Article	IF	CITATIONS
37	Subdiffraction-resolution fluorescence imaging of proteins in the mitochondrial inner membrane with photoswitchable fluorophores. Journal of Structural Biology, 2008, 164, 250-254.	1.3	96
38	Live-cell protein labelling with nanometre precision by cell squeezing. Nature Communications, 2016, 7, 10372.	5.8	94
39	Chemically Induced Photoswitching of Fluorescent Probes—A General Concept for Super-Resolution Microscopy. Molecules, 2011, 16, 3106-3118.	1.7	92
40	Dissecting and Reducing the Heterogeneity of Excited-State Energy Transport in DNA-Based Photonic Wires. Journal of the American Chemical Society, 2006, 128, 16864-16875.	6.6	91
41	Fluorescence of Single Molecules in Polymer Films:Â Sensitivity of Blinking to Local Environment. Journal of Physical Chemistry B, 2007, 111, 6987-6991.	1.2	91
42	Superresolution Optical Fluctuation Imaging with Organic Dyes. Angewandte Chemie - International Edition, 2010, 49, 9441-9443.	7.2	88
43	Single-molecule analysis reveals agonist-specific dimer formation of µ-opioid receptors. Nature Chemical Biology, 2020, 16, 946-954.	3.9	86
44	Single-molecule localization microscopy – near-molecular spatial resolution in light microscopy with photoswitchable fluorophores. Physical Chemistry Chemical Physics, 2013, 15, 14919.	1.3	84
45	Janus Nanomembranes: A Generic Platform for Chemistry in Two Dimensions. Angewandte Chemie - International Edition, 2010, 49, 8493-8497.	7.2	83
46	Correlative Light- and Electron Microscopy with chemical tags. Journal of Structural Biology, 2014, 186, 205-213.	1.3	83
47	Model-independent counting of molecules in single-molecule localization microscopy. Molecular Biology of the Cell, 2016, 27, 3637-3644.	0.9	80
48	Surfing on a new wave of single-molecule fluorescence methods. Physical Biology, 2010, 7, 031001.	0.8	76
49	Spiropyrans as molecular optical switches. Photochemical and Photobiological Sciences, 2010, 9, 213-220.	1.6	76
50	Design of Molecular Photonic Wires Based on Multistep Electronic Excitation Transfer. ChemPhysChem, 2005, 6, 217-222.	1.0	75
51	Visualizing ubiquitination in mammalian cells. EMBO Reports, 2019, 20, .	2.0	73
52	Increasing the Brightness of Cyanine Fluorophores for Singleâ€Molecule and Superresolution Imaging. ChemPhysChem, 2014, 15, 637-641.	1.0	72
53	Quantitative single-molecule imaging of TLR4 reveals ligand-specific receptor dimerization. Science Signaling, 2017, 10, .	1.6	71
54	Measuring localization performance of super-resolution algorithms on very active samples. Optics Express, 2011, 19, 7020.	1.7	70

#	Article	IF	CITATIONS
55	Three-Dimensional, Tomographic Super-Resolution Fluorescence Imaging of Serially Sectioned Thick Samples. PLoS ONE, 2012, 7, e38098.	1.1	70
56	A toolbox for multiplexed super-resolution imaging of the E. coli nucleoid and membrane using novel PAINT labels. Scientific Reports, 2018, 8, 14768.	1.6	68
57	Single-molecule imaging reveals the oligomeric state of functional TNFα-induced plasma membrane TNFR1 clusters in cells. Science Signaling, 2020, 13, .	1.6	67
58	Automated highly multiplexed super-resolution imaging of protein nano-architecture in cells and tissues. Nature Communications, 2020, 11, 1552.	5.8	63
59	Art and artifacts in single-molecule localization microscopy: beyond attractive images. Nature Methods, 2014, 11, 235-238.	9.0	62
60	Nanoscopy of bacterial cells immobilized by holographic optical tweezers. Nature Communications, 2016, 7, 13711.	5.8	61
61	STED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2246-E2253.	3.3	61
62	Fluorescent proteins for singleâ€nolecule fluorescence applications. Journal of Biophotonics, 2008, 1, 74-82.	1.1	58
63	Single-molecule coordinate-based analysis of the morphology of HIV-1 assembly sites with near-molecular spatial resolution. Histochemistry and Cell Biology, 2013, 139, 173-179.	0.8	57
64	SuReSim: simulating localization microscopy experiments from ground truth models. Nature Methods, 2016, 13, 319-321.	9.0	57
65	Super-resolution imaging of Escherichia coli nucleoids reveals highly structured and asymmetric segregation during fast growth. Journal of Structural Biology, 2014, 185, 243-249.	1.3	56
66	Schwann Cells Can Be Reprogrammed to Multipotency by Culture. Stem Cells and Development, 2011, 20, 2053-2064.	1.1	54
67	BACE-1 is expressedÂin the blood–brain barrier endothelium and is upregulated in a murine model of Alzheimer's disease. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1281-1294.	2.4	53
68	Expanding the host cell ubiquitylation machinery targeting cytosolic <i>Salmonella</i> . EMBO Reports, 2017, 18, 1572-1585.	2.0	52
69	Dual Color Photoactivation Localization Microscopy of Cardiomyopathy-associated Desmin Mutants. Journal of Biological Chemistry, 2012, 287, 16047-16057.	1.6	49
70	Click chemistry facilitates direct labelling and super-resolution imaging of nucleic acids and proteins. RSC Advances, 2014, 4, 30462-30466.	1.7	49
71	Direct Stochastic Optical Reconstruction Microscopy (dSTORM). Methods in Molecular Biology, 2015, 1251, 263-276.	0.4	49
72	DNA-Based Molecular Wires:Â Multiple Emission Pathways of Individual Constructs. Journal of Physical Chemistry B, 2006, 110, 26349-26353.	1.2	48

#	Article	IF	CITATIONS
73	Single-molecule photobleaching reveals increased MET receptor dimerization upon ligand binding in intact cells. BMC Biophysics, 2013, 6, 6.	4.4	47
74	Correlative Single-Molecule FRET and DNA-PAINT Imaging. Nano Letters, 2018, 18, 4626-4630.	4.5	47
75	Molecule Counts in Localization Microscopy with Organic Fluorophores. ChemPhysChem, 2017, 18, 942-948.	1.0	44
76	A Set of Homoâ€Oligomeric Standards Allows Accurate Protein Counting. Angewandte Chemie - International Edition, 2015, 54, 12049-12052.	7.2	42
77	SLAP: Small Labeling Pair for Singleâ€Molecule Superâ€Resolution Imaging. Angewandte Chemie - International Edition, 2015, 54, 10216-10219.	7.2	41
78	Optical super-resolution microscopy unravels the molecular composition of functional protein complexes. Nanoscale, 2019, 11, 17981-17991.	2.8	40
79	Subdiffractionâ€Resolution Fluorescence Microscopy of Myosin–Actin Motility. ChemPhysChem, 2010, 11, 836-840.	1.0	38
80	Identification of the Product of Photoswitching of an Oxazine Fluorophore Using Fourier Transform Infrared Difference Spectroscopy. Journal of Physical Chemistry Letters, 2010, 1, 3156-3159.	2.1	38
81	Superresolution Optical Fluctuation Imaging (SOFI). Advances in Experimental Medicine and Biology, 2012, 733, 17-21.	0.8	38
82	Shedding new light on viruses: super-resolution microscopy for studying human immunodeficiency virus. Trends in Microbiology, 2013, 21, 522-533.	3.5	38
83	Proteinâ€Specific, Multicolor and 3D STED Imaging in Cells with DNAâ€Labeled Antibodies. Angewandte Chemie - International Edition, 2019, 58, 18835-18838.	7.2	38
84	A SNAP-Tagged Derivative of HIV-1—A Versatile Tool to Study Virus-Cell Interactions. PLoS ONE, 2011, 6, e22007.	1.1	38
85	Ligand-modulated folding of the full-length adenine riboswitch probed by NMR and single-molecule FRET spectroscopy. Nucleic Acids Research, 2017, 45, 5512-5522.	6.5	37
86	Single cell super-resolution imaging of <i>E. coli</i> OmpR during environmental stress. Integrative Biology (United Kingdom), 2015, 7, 1297-1308.	0.6	36
87	Quantitative single-molecule localization microscopy combined with rule-based modeling reveals ligand-induced TNF-R1 reorganization toward higher-order oligomers. Histochemistry and Cell Biology, 2014, 142, 91-101.	0.8	35
88	Single-molecule imaging and quantification of the immune-variant adhesin VAR2CSA on knobs of Plasmodium falciparum-infected erythrocytes. Communications Biology, 2019, 2, 172.	2.0	34
89	Quantum Dot Triexciton Imaging with Three-Dimensional Subdiffraction Resolution. Nano Letters, 2009, 9, 2466-2470.	4.5	33
90	The prevalence and specificity of local protein synthesis during neuronal synaptic plasticity. Science Advances, 2021, 7, eabj0790.	4.7	33

#	Article	IF	CITATIONS
91	Singleâ€Molecule DNA Biosensors for Protein and Ligand Detection. Angewandte Chemie - International Edition, 2010, 49, 1316-1320.	7.2	31
92	Correlative super-resolution imaging of RNA polymerase distribution and dynamics, bacterial membrane and chromosomal structure inEscherichia coli. Methods and Applications in Fluorescence, 2015, 3, 014005.	1.1	30
93	DeepBacs for multi-task bacterial image analysis using open-source deep learning approaches. Communications Biology, 2022, 5, .	2.0	30
94	SPT and Imaging FCS Provide Complementary Information on the Dynamics of Plasma Membrane Molecules. Biophysical Journal, 2018, 114, 2432-2443.	0.2	29
95	Receptor–Ligand Interactions: Binding Affinities Studied by Singleâ€Molecule and Superâ€Resolution Microscopy on Intact Cells. ChemPhysChem, 2014, 15, 671-676.	1.0	28
96	TNF-α influences the lateral dynamics of TNF receptor I in living cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1984-1989.	1.9	27
97	Quantitative morphological analysis of arrestin2 clustering upon G protein-coupled receptor stimulation by super-resolution microscopy. Journal of Structural Biology, 2013, 184, 329-334.	1.3	27
98	Singleâ€molecule superâ€resolution imaging by tryptophanâ€quenchingâ€induced photoswitching of phalloidinâ€fluorophore conjugates. Microscopy Research and Technique, 2014, 77, 510-516.	1.2	27
99	Lithium insertion mechanism in CoSb3analysed by121Sb Mössbauer spectrometry, X-ray absorption spectroscopy and electronic structure calculations. Journal of Materials Chemistry, 2004, 14, 1759-1767.	6.7	26
100	Superâ€resolved insights into human immunodeficiency virus biology. FEBS Letters, 2016, 590, 1858-1876.	1.3	26
101	Temporal accumulation analysis provides simplified artifact-free analysis of membrane-protein nanoclusters. Nature Methods, 2016, 13, 963-964.	9.0	26
102	High-Resolution Colocalization of Single Molecules within the Resolution Gap of Far-Field Microscopy. ChemPhysChem, 2005, 6, 949-955.	1.0	25
103	Kar1 binding to Sfi1 C-terminal regions anchors the SPB bridge to the nuclear envelope. Journal of Cell Biology, 2015, 209, 843-861.	2.3	25
104	Biased signalling is an essential feature of TLR4 in glioma cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 3084-3095.	1.9	25
105	Coordinate-based co-localization-mediated analysis of arrestin clustering upon stimulation of the C–C chemokine receptor 5 with RANTES/CCL5 analogues. Histochemistry and Cell Biology, 2014, 142, 69-77.	0.8	24
106	The metabolic capacity of lipid droplet localized acyl-CoA synthetase 3 is not sufficient to support local triglyceride synthesis independent of the endoplasmic reticulum in A431 cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 614-624.	1.2	24
107	Live-cell labeling of endogenous proteins with nanometer precision by transduced nanobodies. Chemical Science, 2018, 9, 7835-7842.	3.7	24
108	Synthetic and genetic dimers as quantification ruler for single-molecule counting with PALM. Molecular Biology of the Cell, 2019, 30, 1369-1376.	0.9	24

#	Article	IF	CITATIONS
109	Single-Molecule Super-Resolution Microscopy Reveals Heteromeric Complexes of MET and EGFR upon Ligand Activation. International Journal of Molecular Sciences, 2020, 21, 2803.	1.8	24
110	Competitive Binding Study Revealing the Influence of Fluorophore Labels on Biomolecular Interactions. Nano Letters, 2019, 19, 8245-8249.	4.5	23
111	Serine-ubiquitination regulates Golgi morphology and the secretory pathway upon Legionella infection. Cell Death and Differentiation, 2021, 28, 2957-2969.	5.0	23
112	Correlative light microscopy for high-content screening. BioTechniques, 2013, 55, 243-252.	0.8	22
113	Singleâ€Molecule Methods to Study Membrane Receptor Oligomerization. ChemPhysChem, 2015, 16, 713-721.	1.0	22
114	Specific, targetable interactions with the microenvironment influence imatinib-resistant chronic myeloid leukemia. Leukemia, 2020, 34, 2087-2101.	3.3	22
115	Imaging Diffusion in Living Cells Using Time-Correlated Single-Photon Counting. Analytical Chemistry, 2007, 79, 7340-7345.	3.2	21
116	Periodic acceptor excitation spectroscopy of single molecules. European Biophysics Journal, 2007, 36, 669-674.	1.2	21
117	A new photoactivatable near-infrared-emitting QCy7 fluorophore for single-molecule super-resolution microscopy. Chemical Communications, 2017, 53, 9874-9877.	2.2	20
118	A hydrophilic gel matrix for single-molecule super-resolution microscopy. Optical Nanoscopy, 2013, 2,	4.0	19
119	Integrated and correlative high-throughput and super-resolution microscopy. Histochemistry and Cell Biology, 2014, 141, 597-603.	0.8	19
120	Model-based identification of TNFα-induced IKKβ-mediated and IκBα-mediated regulation of NFκB signal transduction as a tool to quantify the impact of drug-induced liver injury compounds. Npj Systems Biology and Applications, 2018, 4, 23.	1.4	19
121	Multiâ€Color, Bleachingâ€Resistant Superâ€Resolution Optical Fluctuation Imaging with Oligonucleotideâ€Based Exchangeable Fluorophores. Angewandte Chemie - International Edition, 2021, 60, 6310-6313.	7.2	19
122	Super-resolution imaging and estimation of protein copy numbers at single synapses with DNA-point accumulation for imaging in nanoscale topography. Neurophotonics, 2019, 6, 1.	1.7	19
123	Hybridization and reaction-based fluorogenic nucleic acid probes. Chemical Communications, 2012, 48, 9664.	2.2	18
124	Transglutaminase 2 promotes tumorigenicity of colon cancer cells by inactivation of the tumor suppressor p53. Oncogene, 2021, 40, 4352-4367.	2.6	17
125	Switching at the ribosome: riboswitches need rProteins as modulators to regulate translation. Nature Communications, 2021, 12, 4723.	5.8	17
126	Direct binding of hepatocyte growth factor and vascular endothelial growth factor to CD44v6. Bioscience Reports, 2015, 35, .	1.1	16

#	Article	IF	CITATIONS
127	Photoswitchable Fluorophores for Single-Molecule Localization Microscopy. Methods in Molecular Biology, 2013, 950, 131-151.	0.4	15
128	Peptidomimetics That Inhibit and Partially Reverse the Aggregation of Al̂² _{1–42} . Biochemistry, 2017, 56, 4840-4849.	1.2	15
129	Membrane dynamics of resting and internalin Bâ€bound <scp>MET</scp> receptor tyrosine kinase studied by singleâ€molecule tracking. FEBS Open Bio, 2017, 7, 1422-1440.	1.0	15
130	Super helators for Advanced Protein Labeling in Living Cells. Angewandte Chemie - International Edition, 2018, 57, 5620-5625.	7.2	15
131	3D d STORM Imaging of Fixed Brain Tissue. Methods in Molecular Biology, 2017, 1538, 169-184.	0.4	14
132	The Pearling Transition Provides Evidence of Force-Driven Endosomal Tubulation during <i>Salmonella</i> Infection. MBio, 2018, 9, .	1.8	14
133	Quantitative singleâ€molecule imaging of TNFR1 reveals zafirlukast as antagonist of TNFR1 clustering and TNFαâ€induced NFâ€Ä B signaling. Journal of Leukocyte Biology, 2021, 109, 363-371.	1.5	14
134	CRISPR/Cas12a-mediated labeling of MET receptor enables quantitative single-molecule imaging of endogenous protein organization and dynamics. IScience, 2021, 24, 101895.	1.9	14
135	Virtual-'Light-Sheet' Single-Molecule Localisation Microscopy Enables Quantitative Optical Sectioning for Super-Resolution Imaging. PLoS ONE, 2015, 10, e0125438.	1.1	13
136	Diffusion State Transitions in Single-Particle Trajectories of MET Receptor Tyrosine Kinase Measured in Live Cells. Frontiers in Computer Science, 2021, 3, .	1.7	13
137	Enhanced labeling density and whole-cell 3D dSTORM imaging by repetitive labeling of target proteins. Scientific Reports, 2018, 8, 5507.	1.6	12
138	Molecule counts in complex oligomers with single-molecule localization microscopy. Journal Physics D: Applied Physics, 2019, 52, 474002.	1.3	12
139	Microbial Cationic Peptides as a Natural Defense Mechanism against Insect Antimicrobial Peptides. ACS Chemical Biology, 2021, 16, 447-451.	1.6	12
140	Alternating Laser Excitation for Solution-Based Single-Molecule FRET. Cold Spring Harbor Protocols, 2015, 2015, pdb.top086405.	0.2	11
141	PCNA appears in two populations of slow and fast diffusion with a constant ratio throughout S-phase in replicating mammalian cells. Scientific Reports, 2016, 6, 18779.	1.6	11
142	Protein‧pecific, Multicolor and 3D STED Imaging in Cells with DNA‣abeled Antibodies. Angewandte Chemie, 2019, 131, 19011-19014.	1.6	10
143	Single-Molecule FRET Analysis of Protein-DNA Complexes. Methods in Molecular Biology, 2009, 543, 503-521.	0.4	10
144	Fluorescently labeled 1 nm thin nanomembranes. Journal of Biotechnology, 2010, 149, 267-271.	1.9	9

#	Article	IF	CITATIONS
145	Single-particle tracking uncovers dynamics of glutamate-induced retrograde transport of NF-κB p65 in living neurons. Neurophotonics, 2016, 3, 041804.	1.7	9
146	Red light-triggered photoreduction on a nucleic acid template. Chemical Communications, 2020, 56, 10026-10029.	2.2	8
147	Imaging the fibroblast growth factor receptor network on the plasma membrane with DNA-assisted single-molecule super-resolution microscopy. Methods, 2021, 193, 38-45.	1.9	8
148	Automated Analysis of Fluorescence Kinetics in Single-Molecule Localization Microscopy Data Reveals Protein Stoichiometry. Journal of Physical Chemistry B, 2021, 125, 5716-5721.	1.2	7
149	Visualizing Synaptic Multi-Protein Patterns of Neuronal Tissue With DNA-Assisted Single-Molecule Localization Microscopy. Frontiers in Synaptic Neuroscience, 2021, 13, 671288.	1.3	7
150	KAHRP dynamically relocalizes to remodeled actin junctions and associates with knob spirals in <i>Plasmodium falciparum</i> â€infected erythrocytes. Molecular Microbiology, 2022, 117, 274-292.	1.2	7
151	Subdiffraction fluorescence imaging of biomolecular structure and distributions with quantum dots. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 1224-1229.	1.9	6
152	dSTORM: real-time subdiffraction-resolution fluorescence imaging with organic fluorophores. , 2010, , .		6
153	Sample Preparation and Data Acquisition for μs-ALEX. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot086439.	0.2	6
154	Sequential Super-Resolution Imaging of Bacterial Regulatory Proteins, the Nucleoid and the Cell Membrane in Single, Fixed E. coli Cells. Methods in Molecular Biology, 2017, 1624, 269-289.	0.4	6
155	Quantitative Single-Molecule Localization Microscopy (qSMLM) of Membrane Proteins Based on Kinetic Analysis of Fluorophore Blinking Cycles. Methods in Molecular Biology, 2017, 1663, 115-126.	0.4	6
156	Light at the End of the Tunnel. Angewandte Chemie - International Edition, 2009, 48, 3908-3910.	7.2	5
157	A two-photon activatable amino acid linker for the induction of fluorescence. Chemical Communications, 2015, 51, 15382-15385.	2.2	5
158	Multiâ€Color, Bleachingâ€Resistant Superâ€Resolution Optical Fluctuation Imaging with Oligonucleotideâ€Based Exchangeable Fluorophores. Angewandte Chemie, 2021, 133, 6380-6383.	1.6	5
159	Aligning the μs-ALEX Setup. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot086421.	0.2	4
160	Molecular counting of membrane receptor subunits with single-molecule localization microscopy. Proceedings of SPIE, 2017, , .	0.8	4
161	Super helators for Advanced Protein Labeling in Living Cells. Angewandte Chemie, 2018, 130, 5722-5727.	1.6	4
162	Toward ultra-stable fluorescent dyes for single-molecule spectroscopy. , 2007, 6633, 405.		3

#	Article	IF	CITATIONS
163	2.4 Super-Resolution Microscopy. , 2012, , 39-58.		3
164	Simple Method for Sub-Diffraction Resolution Imaging of Cellular Structures on Standard Confocal Microscopes by Three-Photon Absorption of Quantum Dots. PLoS ONE, 2013, 8, e64023.	1.1	3
165	Editorial overview: Molecular imaging. Current Opinion in Chemical Biology, 2014, 20, v-vii.	2.8	3
166	Assembling the μs-ALEX Setup. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot086413.	0.2	3
167	Red light-triggered nucleic acid-templated reaction based on cyclic oligonucleotide substrates. Chemical Communications, 2019, 55, 10713-10716.	2.2	3
168	Cyclophilin anaCyp40 regulates photosystem assembly and phycobilisome association in a cyanobacterium. Nature Communications, 2022, 13, 1690.	5.8	2
169	Extraction of diffusion state transitions in single-particle tracking data of membrane receptors. , 2022, , .		2
170	Development of a molecular photonic wire by means of multiparameter single-molecule spectroscopy. , 2003, , .		1
171	Superresolution Optical fluctuations imaging (SOFI). , 2010, , .		1
172	Correlating DNA-PAINT and single-molecule FRET for multiplexed super-resolution imaging. , 2020, , .		1
173	Spectrally resolved fluorescence lifetime imaging microscopy (SFLIM) and coincidence analysis: new tools to study the organization of biomolecular machines. , 2003, , .		0
174	Studying ${\rm I}f$ 54-dependent transcription at the single-molecule level using alternating-laser excitation (ALEX) spectroscopy. , 2007, , .		0
175	Photoswitching microscopy with subdiffraction-resolution. , 2009, , .		0
176	Buffer controlled photoswitching microscopy using standard organic fluorophores. Proceedings of SPIE, 2011, , .	0.8	0
177	TNF Receptor Membrane Dynamics Studied with Fluorescence Microscopy and Spectroscopy. Springer Series on Fluorescence, 2012, , 439-455.	0.8	0
178	In this special issue. Histochemistry and Cell Biology, 2014, 141, 559-560.	0.8	0
179	In this special issue. Histochemistry and Cell Biology, 2014, 142, 3-4.	0.8	0

180 Titelbild: SLAP: Small Labeling Pair for Single-Molecule Super-Resolution Imaging (Angew. Chem.) Tj ETQq0 0 0 rgBT_{1.6} Verlock 10 Tf 50 6

#	Article	IF	CITATIONS
181	Frontispiece: Superâ€Chelators for Advanced Protein Labeling in Living Cells. Angewandte Chemie - International Edition, 2018, 57, .	7.2	0
182	Frontispiz: Superâ€Chelators for Advanced Protein Labeling in Living Cells. Angewandte Chemie, 2018, 130, .	1.6	0
183	Quantification of membrane receptor complexes with single-molecule localization microscopy. , 2019, , .		0
184	Quantitative single-molecule localization microscopy reports on protein numbers in signaling protein complexes. , 2020, , .		0
185	Receptor tyrosine kinase MET ligand-interaction classified via machine learning from single-particle tracking data. Molecular Biology of the Cell, 2022, , mbcE21100496.	0.9	0