
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/709526/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Multifunctional Neutralizing Antibodyâ€Conjugated Nanoparticle Inhibits and Inactivates SARSâ€CoVâ€2. Advanced Science, 2022, 9, e2103240.	11.2	16
2	Circulating ACE2-expressing extracellular vesicles block broad strains of SARS-CoV-2. Nature Communications, 2022, 13, 405.	12.8	92
3	Engineered human antibodies for the opsonization and killing of <i>Staphylococcus aureus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	18
4	A Novel Soluble ACE2 Protein Provides Lung and Kidney Protection in Mice Susceptible to Lethal SARS-CoV-2 Infection. Journal of the American Society of Nephrology: JASN, 2022, 33, 1293-1307.	6.1	26
5	Spherical nucleic acids as an infectious disease vaccine platform. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119093119.	7.1	20
6	Toward Optimization of a Rabbit Model of Staphylococcus aureus (USA300) Skin and Soft Tissue Infection. Microbiology Spectrum, 2022, 10, e0271621.	3.0	2
7	Staphylococcus aureus vWF-binding protein triggers a strong interaction between clumping factor A and host vWF. Communications Biology, 2021, 4, 453.	4.4	11
8	Peptidoglycan Contribution to the B Cell Superantigen Activity of Staphylococcal Protein A. MBio, 2021, 12, .	4.1	7
9	Regulated Cleavage of Glycan Strands by the Murein Hydrolase SagB in Staphylococcus aureus Involves a Direct Interaction with LyrA (SpdC). Journal of Bacteriology, 2021, 203, .	2.2	8
10	A protein A based Staphylococcus aureus vaccine with improved safety. Vaccine, 2021, 39, 3907-3915.	3.8	9
11	Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. Science, 2021, 373, 931-936.	12.6	173
12	The Expression of von Willebrand Factor-Binding Protein Determines Joint-Invading Capacity of Staphylococcus aureus, a Core Mechanism of Septic Arthritis. MBio, 2020, 11, .	4.1	14
13	FmhA and FmhC of Staphylococcus aureus incorporate serine residues into peptidoglycan cross-bridges. Journal of Biological Chemistry, 2020, 295, 13664-13676.	3.4	16
14	Glycosylation-dependent opsonophagocytic activity of staphylococcal protein A antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22992-23000.	7.1	19
15	Distinct Pathways Carry Out α and β Galactosylation of Secondary Cell Wall Polysaccharide in Bacillus anthracis. Journal of Bacteriology, 2020, 202, .	2.2	4
16	Selective Host Cell Death by Staphylococcus aureus: A Strategy for Bacterial Persistence. Frontiers in Immunology, 2020, 11, 621733.	4.8	21
17	Rapid Pathogen Identification With Direct Application of MALDI-TOF Mass Spectrometry on an Endophthalmitis Vitreous Sample Without Prior Culture. Journal of Vitreoretinal Diseases, 2019, 3, 255-259.	0.7	3
18	Staphylococcus aureus Exploits the Host Apoptotic Pathway To Persist during Infection. MBio, 2019, 10	4.1	32

#	Article	IF	CITATIONS
19	FPR1 is the plague receptor on host immune cells. Nature, 2019, 574, 57-62.	27.8	48
20	Extraction and Purification of Wall-Bound Polymers of Gram-Positive Bacteria. Methods in Molecular Biology, 2019, 1954, 47-57.	0.9	3
21	<i>Staphylococcus aureus</i> endocarditis: distinct mechanisms of bacterial adhesion to damaged and inflamed heart valves. European Heart Journal, 2019, 40, 3248-3259.	2.2	92
22	Sortases, Surface Proteins, and Their Roles in <i>Staphylococcus aureus</i> Disease and Vaccine Development. Microbiology Spectrum, 2019, 7, .	3.0	39
23	Staphylococcus aureus alpha-hemolysin impairs corneal epithelial wound healing and promotes intracellular bacterial invasion. Experimental Eye Research, 2019, 181, 263-270.	2.6	24
24	Staphylococcus aureus TarP: A Brick in the Wall or Rosetta Stone?. Cell Host and Microbe, 2019, 25, 182-183.	11.0	2
25	Sortases, Surface Proteins, and Their Roles inStaphylococcus aureusDisease and Vaccine Development. , 2019, , 173-188.		3
26	Rapid pathogen identification and antimicrobial susceptibility testing in in vitro endophthalmitis with matrix assisted laser desorption-ionization Time-of-Flight Mass Spectrometry and VITEK 2 without prior culture. PLoS ONE, 2019, 14, e0227071.	2.5	7
27	Staphylococcus aureus Decolonization of Mice With Monoclonal Antibody Neutralizing Protein A. Journal of Infectious Diseases, 2019, 219, 884-888.	4.0	34
28	Title is missing!. , 2019, 14, e0227071.		0
29	Title is missing!. , 2019, 14, e0227071.		Ο
30	Title is missing!. , 2019, 14, e0227071.		0
31	Title is missing!. , 2019, 14, e0227071.		Ο
32	Staphylococcal Protein A Contributes to Persistent Colonization of Mice with Staphylococcus aureus. Journal of Bacteriology, 2018, 200, .	2.2	36
33	Marginal role of von Willebrand factor-binding protein and coagulase in the initiation of endocarditis in rats with catheter-induced aortic vegetations. Virulence, 2018, 9, 1615-1624.	4.4	13
34	Development of a Computational Model of Abscess Formation. Frontiers in Microbiology, 2018, 9, 1355.	3.5	3
35	EssH Peptidoglycan Hydrolase Enables Staphylococcus aureus Type VII Secretion across the Bacterial Cell Wall Envelope. Journal of Bacteriology, 2018, 200, .	2.2	20
36	<i>Staphylococcus aureus</i> targets the purine salvage pathway to kill phagocytes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6846-6851.	7.1	36

#	Article	IF	CITATIONS
37	Septal secretion of protein A in Staphylococcus aureus requires SecA and lipoteichoic acid synthesis. ELife, 2018, 7, .	6.0	22
38	Pathogenic conversion of coagulase-negative staphylococci. Microbes and Infection, 2017, 19, 101-109.	1.9	22
39	Isolation of a Membrane Protein Complex for Type VII Secretion in Staphylococcus aureus. Journal of Bacteriology, 2017, 199, .	2.2	26
40	A novel STK1-targeted small-molecule as an "antibiotic resistance breaker―against multidrug-resistant Staphylococcus aureus. Scientific Reports, 2017, 7, 5067.	3.3	35
41	EssE Promotes Staphylococcus aureus ESS-Dependent Protein Secretion To Modify Host Immune Responses during Infection. Journal of Bacteriology, 2017, 199, .	2.2	28
42	Genes Required for Bacillus anthracis Secondary Cell Wall Polysaccharide Synthesis. Journal of Bacteriology, 2017, 199, .	2.2	16
43	EssD, a Nuclease Effector of the Staphylococcus aureus ESS Pathway. Journal of Bacteriology, 2017, 199, .	2.2	47
44	Pathogenesis of <i>Staphylococcus aureus</i> Bloodstream Infections. Annual Review of Pathology: Mechanisms of Disease, 2016, 11, 343-364.	22.4	212
45	<i>Staphylococcus aureus</i> vaccines: Deviating from the carol. Journal of Experimental Medicine, 2016, 213, 1645-1653.	8.5	63
46	SagB Glucosaminidase Is a Determinant of Staphylococcus aureus Glycan Chain Length, Antibiotic Susceptibility, and Protein Secretion. Journal of Bacteriology, 2016, 198, 1123-1136.	2.2	37
47	Antibodies against a secreted product of <i>Staphylococcus aureus</i> trigger phagocytic killing. Journal of Experimental Medicine, 2016, 213, 293-301.	8.5	51
48	Bacillus anthracis SlaQ Promotes S-Layer Protein Assembly. Journal of Bacteriology, 2015, 197, 3216-3227.	2.2	9
49	Staphylococcal manipulation of host immune responses. Nature Reviews Microbiology, 2015, 13, 529-543.	28.6	434
50	<i>Bacillus anthracis lcp</i> Genes Support Vegetative Growth, Envelope Assembly, and Spore Formation. Journal of Bacteriology, 2015, 197, 3731-3741.	2.2	16
51	Bacillus anthracis tagO Is Required for Vegetative Growth and Secondary Cell Wall Polysaccharide Synthesis. Journal of Bacteriology, 2015, 197, 3511-3520.	2.2	20
52	LytR-CpsA-Psr Enzymes as Determinants of Bacillus anthracis Secondary Cell Wall Polysaccharide Assembly. Journal of Bacteriology, 2015, 197, 343-353.	2.2	41
53	Vaccine Protection of Leukopenic Mice against Staphylococcus aureus Bloodstream Infection. Infection and Immunity, 2014, 82, 4889-4898.	2.2	21
54	Release of protein A from the cell wall of <i>Staphylococcus aureus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1574-1579.	7.1	113

#	Article	IF	CITATIONS
55	Adhesion of Staphylococcus aureus to the vessel wall under flow is mediated by von Willebrand factor–binding protein. Blood, 2014, 124, 1669-1676.	1.4	96
56	A monoclonal antibody that recognizes the E domain of staphylococcal protein A. Vaccine, 2014, 32, 464-469.	3.8	10
57	Mouse models for infectious diseases caused by Staphylococcus aureus. Journal of Immunological Methods, 2014, 410, 88-99.	1.4	127
58	The Capsular Polysaccharide of Staphylococcus aureus Is Attached to Peptidoglycan by the LytR-CpsA-Psr (LCP) Family of Enzymes. Journal of Biological Chemistry, 2014, 289, 15680-15690.	3.4	93
59	Sec-secretion and sortase-mediated anchoring of proteins in Gram-positive bacteria. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1687-1697.	4.1	112
60	GneZ, a UDP-GlcNAc 2-Epimerase, Is Required for S-Layer Assembly and Vegetative Growth of Bacillus anthracis. Journal of Bacteriology, 2014, 196, 2969-2978.	2.2	13
61	What Genomics Has Taught Us about Gram-Positive Protein Secretion and Targeting. , 2014, , 301-326.		2
62	Multiple Ligands of von Willebrand Factor-binding Protein (vWbp) Promote Staphylococcus aureus Clot Formation in Human Plasma. Journal of Biological Chemistry, 2013, 288, 28283-28292.	3.4	69
63	Staphylococcus aureus Mutants Lacking the LytR-CpsA-Psr Family of Enzymes Release Cell Wall Teichoic Acids into the Extracellular Medium. Journal of Bacteriology, 2013, 195, 4650-4659.	2.2	104
64	Secretion of atypical protein substrates by the <scp>ESAT</scp> â€6 <scp>S</scp> ecretion <scp>S</scp> ystem of <i><scp>S</scp>taphylococcus aureus</i> . Molecular Microbiology, 2013, 90, 734-743.	2.5	66
65	Recurrent infections and immune evasion strategies of Staphylococcus aureus. Current Opinion in Microbiology, 2012, 15, 92-99.	5.1	189
66	A play in four acts: Staphylococcus aureus abscess formation. Trends in Microbiology, 2011, 19, 225-232.	7.7	233
67	The SLHâ€domain protein BslO is a determinant of Bacillus anthracis chain length. Molecular Microbiology, 2011, 81, 192-205.	2.5	32
68	Identifying protective antigens of <i>Staphylococcus aureus</i> , a pathogen that suppresses host immune responses. FASEB Journal, 2011, 25, 3605-3612.	0.5	62
69	Capsule anchoring in <i>Bacillus anthracis</i> occurs by a transpeptidation reaction that is inhibited by capsidin. Molecular Microbiology, 2009, 71, 404-420.	2.5	61
70	Host defenses against Staphylococcus aureus infection require recognition of bacterial lipoproteins. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13831-13836.	7.1	219
71	Changes in lipopolysaccharide structure induce the σE-dependent response of Escherichia coli. Molecular Microbiology, 2005, 55, 1403-1412.	2.5	70