
Martijn Constantijn de Koning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/709522/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a Metal–Organic Framework/Textile Composite for the Rapid Degradation and Sensitive Detection of the Nerve Agent VX. Chemistry of Materials, 2022, 34, 1269-1277.	6.7	22
2	Effective Degradation of Novichok Nerve Agents by the Zirconium Metal–Organic Framework MOF-808. ACS Applied Materials & Interfaces, 2022, 14, 9222-9230.	8.0	18
3	Enzymatic Decontamination of G-Type, V-Type and Novichok Nerve Agents. International Journal of Molecular Sciences, 2021, 22, 8152.	4.1	20
4	Utilizing Zirconium MOFâ€functionalized Fiber Substrates Prepared by Molecular Layer Deposition for Toxic Gas Capture and Chemical Warfare Agent Degradation. Global Challenges, 2021, 5, 2100001.	3.6	10
5	Immobilized Regenerable Active Chlorine within a Zirconium-Based MOF Textile Composite to Eliminate Biological and Chemical Threats. Journal of the American Chemical Society, 2021, 143, 16777-16785.	13.7	64
6	Contact transfer risk from fentanyl-contaminated RSDL® Kit. Toxicology Letters, 2020, 319, 237-241.	0.8	5
7	Synthesis and in vitro evaluation of novel non-oximes for the reactivation of nerve agent inhibited human acetylcholinesterase. Chemico-Biological Interactions, 2020, 326, 109139.	4.0	7
8	Degradation and Detection of the Nerve Agent VX by a Chromophore-Functionalized Zirconium MOF. Chemistry of Materials, 2019, 31, 7417-7424.	6.7	39
9	Theoretical NMR and conformational analysis of solvated oximes for organophosphates-inhibited acetylcholinesterase reactivation. Journal of Molecular Structure, 2018, 1152, 311-320.	3.6	10
10	Interactions between acetylcholinesterase, toxic organophosphorus compounds and a short series of structurally related non-oxime reactivators: Analysis of reactivation and inhibition kinetics in vitro. Toxicology Letters, 2018, 299, 218-225.	0.8	14
11	Discovery of a potent non-oxime reactivator of nerve agent inhibited human acetylcholinesterase. European Journal of Medicinal Chemistry, 2018, 157, 151-160.	5.5	34
12	Application of the Ugi Multicomponent Reaction in the Synthesis of Reactivators of Nerve Agent Inhibited Acetylcholinesterase. Journal of Medicinal Chemistry, 2017, 60, 9376-9392.	6.4	17
13	Degradation of Paraoxon and the Chemical Warfare Agents VX, Tabun, and Soman by the Metal–Organic Frameworks UiO-66-NH ₂ , MOF-808, NU-1000, and PCN-777. Inorganic Chemistry, 2017, 56, 11804-11809.	4.0	124
14	Nanometric MIL-125-NH2 Metal–Organic Framework as a Potential Nerve Agent Antidote Carrier. Nanomaterials, 2017, 7, 321.	4.1	71
15	Docking and molecular dynamics studies of peripheral site ligand–oximes as reactivators of sarin-inhibited human acetylcholinesterase. Journal of Biomolecular Structure and Dynamics, 2016, 34, 1-11.	3.5	28
16	A step toward the reactivation of aged cholinesterases – Crystal structure of ligands binding to aged human butyrylcholinesterase. Chemico-Biological Interactions, 2013, 203, 19-23.	4.0	36
17	Different Virucidal Activities of Hyperbranched Quaternary Ammonium Coatings on Poliovirus and Influenza Virus. Applied and Environmental Microbiology, 2012, 78, 2456-2458.	3.1	69
18	Peripheral site ligand conjugation to a non-quaternary oxime enhances reactivation of nerve agent-inhibited human acetylcholinesterase. Toxicology Letters, 2011, 206, 54-59.	0.8	54

Martijn Constantijn de

#	Article	IF	CITATIONS
19	Peripheral site ligand–oxime conjugates: A novel concept towards reactivation of nerve agent-inhibited human acetylcholinesterase. Bioorganic and Medicinal Chemistry, 2011, 19, 588-594.	3.0	38
20	A two-step sulfurization for efficient solution-phase synthesis of phosphorothioate oligonucleotides. Tetrahedron Letters, 2008, 49, 3129-3132.	1.4	7
21	Study of the Glycosidation Properties of 1-Thiomannosazidopyranosides and 1-Thiomannosaziduronic Acid Esters. European Journal of Organic Chemistry, 2007, 2007, 116-124.	2.4	13
22	Simple and Efficient Solution-Phase Synthesis of Oligonucleotides Using Extractive Work-Up. Organic Process Research and Development, 2006, 10, 1238-1245.	2.7	33
23	Synthesis of thiol-modified peptide nucleic acids designed for post-assembly conjugation reactions. Tetrahedron, 2006, 62, 3248-3258.	1.9	29
24	Reactivity of PNA Thioesters in Chemical Ligation Reactions. Synlett, 2005, 2005, 595-598.	1.8	0
25	Synthesis and in Vitro Evaluation of PNAâ^'Peptideâ^'DETA Conjugates as Potential Cell Penetrating Artificial Ribonucleases. Bioconjugate Chemistry, 2004, 15, 576-582.	3.6	30
26	Synthetic developments towards PNA?peptide conjugates. Current Opinion in Chemical Biology, 2003, 7, 734-740.	6.1	29
27	Synthesis of macrocyclic peptide nucleic acid derivatives via intramolecular chemical ligation. Tetrahedron Letters, 2003, 44, 7597-7600.	1.4	6
28	An approach to the synthesis of peptide–PNA–peptide conjugates via native ligation. Tetrahedron Letters, 2002, 43, 8173-8176.	1.4	12
29	Synthesis of a PNA-Peptide Conjugate by Chemical Ligation. Synlett, 2001, 2001, 1516-1518.	1.8	7
30	An expeditious route to the synthesis of kelampayosides A and B. Tetrahedron, 1999, 55, 9881-9898.	1.9	17
31	Synthesis of 3,4,5-trimethoxyphenyl 5″-O-caffeoyl-β-d-erythro-apiofuranosyl-(1→6)-β-d-glucopyranoside: Kelampayoside B. Tetrahedron Letters, 1998, 39, 4129-4132.	1.4	6