Tim Van Hoolst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7095109/publications.pdf

Version: 2024-02-01

117 papers

4,184 citations

35 h-index 60 g-index

126 all docs

126 docs citations

126 times ranked 3245 citing authors

#	Article	IF	CITATIONS
1	Enceladus as a potential oasis for life: Science goals and investigations for future explorations. Experimental Astronomy, 2022, 54, 809-847.	1.6	5
2	Large eddy simulations of the Martian convective boundary layer: Towards developing a new planetary boundary layer scheme. Atmospheric Research, 2021, 250, 105381.	1.8	12
3	Mercury's Interior Structure Constrained by Density and Pâ€Wave Velocity Measurements of Liquid Feâ€Siâ€C Alloys. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006651.	1.5	14
4	Updated Europa gravity field and interior structure from a reanalysis of Galileo tracking data. Icarus, 2021, 358, 114187.	1.1	24
5	Geodesy, Geophysics and Fundamental Physics Investigations of the BepiColombo Mission. Space Science Reviews, 2021, 217, 1.	3.7	25
6	Gravity, Geodesy and Fundamental Physics with BepiColombo's MORE Investigation. Space Science Reviews, 2021, 217, 1.	3.7	28
7	Mars precession rate determined from radiometric tracking of the InSight Lander. Planetary and Space Science, 2021, 199, 105208.	0.9	15
8	Strong seasonal and regional variations in the evaporation rate of liquid water on Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006867.	1.5	2
9	Regions of interest on Ganymede's and Callisto's surfaces as potential targets for ESA's JUICE mission. Planetary and Space Science, 2021, 208, 105324.	0.9	12
10	Modelling of thermal stratification at the top of a planetary core: Application to the cores of Earth and Mercury and the thermal coupling with their mantles. Physics of the Earth and Planetary Interiors, 2021, 321, 106804.	0.7	4
11	LaRa after RISE: Expected improvement in the Mars rotation and interior models. Planetary and Space Science, 2020, 180, 104745.	0.9	5
12	The radioscience LaRa instrument onboard ExoMars 2020 to investigate the rotation and interior of mars. Planetary and Space Science, 2020, 180, 104776.	0.9	18
13	Detection of the Chandler Wobble of Mars From Orbiting Spacecraft. Geophysical Research Letters, 2020, 47, e2020GL090568.	1.5	37
14	The precession and nutations of a rigid Mars. Celestial Mechanics and Dynamical Astronomy, 2020, 132, 1.	0.5	6
15	The Librations, Tides, and Interior Structure of Io. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006473.	1.5	9
16	Joint Europa Mission (JEM): a multi-scale study of Europa to characterize its habitability and search for extant life. Planetary and Space Science, 2020, 193, 104960.	0.9	15
17	SIMBIO-SYS: Scientific Cameras and Spectrometer for the BepiColombo Mission. Space Science Reviews, 2020, 216, 1.	3.7	47
18	Ice-Ocean Exchange Processes in the Jovian and Saturnian Satellites. Space Science Reviews, 2020, 216, 1.	3.7	43

#	Article	IF	CITATIONS
19	Large Ocean Worlds with High-Pressure Ices. Space Science Reviews, 2020, 216, 1.	3.7	62
20	Mercury's Crustal Thickness Correlates With Lateral Variations in Mantle Melt Production. Geophysical Research Letters, 2020, 47, e2020GL087261.	1.5	24
21	Geoscience for Understanding Habitability in the Solar System and Beyond. Space Science Reviews, 2019, 215, 1.	3.7	14
22	Exoplanet interiors and habitability. Advances in Physics: X, 2019, 4, 1630316.	1.5	9
23	Normal modes and resonance in Ontario Lacus: a hydrocarbon lake of Titan. Ocean Dynamics, 2019, 69, 1121-1132.	0.9	0
24	Hydrostatic Interfaces in Bodies With Nonhydrostatic Lithospheres. Journal of Geophysical Research E: Planets, 2019, 124, 1410-1432.	1.5	17
25	Coupling between the spin precession and polar motion of a synchronously rotating satellite: application to Titan. Celestial Mechanics and Dynamical Astronomy, 2019, 131, 1.	0.5	1
26	Pre-mission InSights on the Interior of Mars. Space Science Reviews, 2019, 215, 1.	3.7	85
27	Variations in rotation rate and polar motion of a non-hydrostatic Titan. Icarus, 2018, 307, 83-105.	1.1	3
28	A new ab initio equation of state of hcp-Fe and its implication on the interior structure and mass-radius relations of rocky super-Earths. Icarus, 2018, 313, 61-78.	1.1	66
29	The Rotation and Interior Structure Experiment on the InSight Mission to Mars. Space Science Reviews, 2018, 214, 1.	3.7	64
30	Volcanism and outgassing of stagnant-lid planets: Implications for the habitable zone. Physics of the Earth and Planetary Interiors, 2017, 269, 40-57.	0.7	96
31	Understanding the effects of the core on the nutation of the Earth. Geodesy and Geodynamics, 2017, 8, 389-395.	1.0	17
32	Obliquity of Mercury: Influence of the precession of the pericenter and of tides. Icarus, 2017, 291, 136-159.	1.1	18
33	Survey of Capabilities and Applications of Accurate Clocks: Directions for Planetary Science. Space Science Reviews, 2017, 212, 1433-1451.	3.7	7
34	Survey of Capabilities and Applications of Accurate Clocks: Directions for Planetary Science. Space Sciences Series of ISSI, 2017, , 163-181.	0.0	0
35	Enceladus's internal ocean and ice shell constrained from Cassini gravity, shape, and libration data. Geophysical Research Letters, 2016, 43, 5653-5660.	1.5	141
36	Water-rich planets: How habitable is a water layer deeper than on Earth?. Icarus, 2016, 277, 215-236.	1.1	98

#	Article	IF	CITATIONS
37	PLANET TOPERS: Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS. Origins of Life and Evolution of Biospheres, 2016, 46, 369-384.	0.8	2
38	The diurnal libration and interior structure of Enceladus. Icarus, 2016, 277, 311-318.	1.1	41
39	The obliquity of Enceladus. Icarus, 2016, 268, 12-31.	1.1	52
40	Modeling the polar motion of Titan. Icarus, 2016, 265, 1-28.	1.1	7
41	Rotation of the Terrestrial Planets. , 2015, , 121-151.		10
42	Interior Structure and Evolution of Mars. , 2014, , 379-396.		6
43	Slichter modes of large icy satellites. Icarus, 2014, 231, 287-299.	1.1	2
44	Numerical simulation of tides and oceanic angular momentum of Titan's hydrocarbon seas. Icarus, 2014, 242, 188-201.	1.1	24
45	Titan's internal structure inferred from its gravity field, shape, and rotation state. Icarus, 2014, 237, 29-41.	1.1	69
46	The libration and interior structure of large icy satellites and Mercury. Proceedings of the International Astronomical Union, 2014, 9, 1-8.	0.0	4
47	The long-period forced librations of Titan. Proceedings of the International Astronomical Union, 2014, 9, 25-28.	0.0	2
48	Influence of an inner core on the long-period forced librations of Mercury. Icarus, 2013, 226, 41-51.	1.1	18
49	The role of Mercury's core density structure on its longitudinal librations. Icarus, 2013, 225, 62-74.	1.1	21
50	JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system. Planetary and Space Science, 2013, 78, 1-21.	0.9	455
51	Long-Term Evolution of the Martian Crust-Mantle System. Space Science Reviews, 2013, 174, 49-111.	3.7	124
52	The interior structure of Mercury constrained by the low-degree gravity field and the rotation of Mercury. Earth and Planetary Science Letters, 2013, 377-378, 62-72.	1.8	66
53	On the librations and tides of large icy satellites. Icarus, 2013, 226, 299-315.	1.1	54
54	Period of the Slichter mode of Mercury and its possible observation. Astronomy and Astrophysics, 2012, 543, A40.	2.1	2

#	Article	IF	CITATIONS
55	Obliquity of the Galilean satellites: The influence of a global internal liquid layer. Icarus, 2012, 220, 435-448.	1.1	33
56	The effect of tides and an inner core on the forced longitudinal libration of Mercury. Earth and Planetary Science Letters, 2012, 333-334, 83-90.	1.8	31
57	Polar motion of Titan forced by the atmosphere. Journal of Geophysical Research, 2011, 116, .	3.3	11
58	Crystal structure prediction for iron as inner core material in heavy terrestrial planets. Earth and Planetary Science Letters, 2011, 312, 237-242.	1.8	32
59	On the coupling between magnetic field and nutation in a numerical integration approach. Journal of Geophysical Research, 2011, 116, .	3.3	8
60	Librational response of Europa, Ganymede, and Callisto with an ocean for a non-Keplerian orbit. Astronomy and Astrophysics, 2011, 527, A118.	2.1	40
61	Seismic modelling of the <i>β</i> àê‰Cephei star HD 180642 (V1449 Aquilae). Astronomy and Astrop 534, A98.	hysics, 201	¹¹ 26
62	Titan's obliquity as evidence of a subsurface ocean?. Astronomy and Astrophysics, 2011, 530, A141.	2.1	46
63	Revealing Mars' deep interior: Future geodesy missions using radio links between landers, orbiters, and the Earth. Planetary and Space Science, 2011, 59, 1069-1081.	0.9	18
64	Atmospheric angular momentum variations of Earth, Mars and Venus at seasonal time scales. Planetary and Space Science, 2011, 59, 923-933.	0.9	15
65	Geodesy constraints on the interior structure and composition of Mars. Icarus, 2011, 213, 451-472.	1.1	183
66	Librations and obliquity of Mercury from the BepiColombo radio-science and camera experiments. Planetary and Space Science, 2011, 59, 848-861.	0.9	15
67	Evolution of Icy Satellites. Space Science Reviews, 2010, 153, 447-484.	3.7	49
68	Implications of Rotation, Orbital States, Energy Sources, and Heat Transport for Internal Processes in Icy Satellites. Space Science Reviews, 2010, 153, 317-348.	3.7	52
69	Librations of the Galilean satellites: The influence of global internal liquid layers. Icarus, 2010, 209, 651-664.	1.1	28
70	Linear Isentropic Oscillations of Stars. Astrophysics and Space Science Library, 2010, , .	1.0	17
71	Implications of Rotation, Orbital States, Energy Sources, and Heat Transport for Internal Processes in Icy Satellites. Space Sciences Series of ISSI, 2010, , 315-346.	0.0	0
72	Composition and formation of Mercury: Constraints from future electrical conductivity measurements. Planetary and Space Science, 2009, 57, 296-305.	0.9	18

#	Article	IF	CITATIONS
73	Martian gravity field model and its time variations from MGS and Odyssey data. Planetary and Space Science, 2009, 57, 350-363.	0.9	66
74	The effect of gravitational and pressure torques on Titan's length-of-day variations. Icarus, 2009, 200, 256-264.	1.1	44
75	LAPLACE: A mission to Europa and the Jupiter System for ESA's Cosmic Vision Programme. Experimental Astronomy, 2009, 23, 849-892.	1.6	38
76	Strong tidal dissipation in Io and Jupiter from astrometric observations. Nature, 2009, 459, 957-959.	13.7	283
77	The interior structure of Mercury and its core sulfur content. Icarus, 2009, 201, 12-30.	1.1	75
78	Lander radioscience for obtaining the rotation and orientation of Mars. Planetary and Space Science, 2009, 57, 1050-1067.	0.9	32
79	Constraints on thermal state and composition of the Earth's lower mantle from electromagnetic impedances and seismic data. Journal of Geophysical Research, 2009, 114, .	3.3	28
80	Accurate Mars Express orbits to improve the determination of the mass and ephemeris of the Martian moons. Planetary and Space Science, 2008, 56, 1043-1053.	0.9	39
81	The librations, shape, and icy shell of Europa. Icarus, 2008, 195, 386-399.	1.1	75
82	Effect of internal gravitational coupling on Titan's nonâ€synchronous rotation. Geophysical Research Letters, 2008, 35, .	1.5	22
83	Mercury's Interior Structure, Rotation, and Tides. Space Sciences Series of ISSI, 2008, , 21-45.	0.0	4
84	The Rotation of the Terrestrial Planets. , 2007, , 123-164.		5
85	Inertial core-mantle coupling and libration of Mercury. Astronomy and Astrophysics, 2007, 468, 711-719.	2.1	30
86	Planetary Magnetic Dynamo Effect on Atmospheric Protection of Early Earth and Mars. Space Science Reviews, 2007, 129, 279-300.	3.7	53
87	Mercury's Interior Structure, Rotation, and Tides. Space Science Reviews, 2007, 132, 203-227.	3.7	34
88	Gravity, rotation, and interior of the terrestrial planets from planetary geodesy: example of Mars. International Association of Geodesy Symposia, 2007, , 887-894.	0.2	0
89	Assessment of the Martian gravity field at short wavelength with Mars Express. Geophysical Research Letters, 2006, 33, .	1.5	11
90	Martian global-scale CO2exchange from time-variable gravity measurements. Journal of Geophysical Research, 2006, 111, .	3.3	21

#	Article	IF	CITATIONS
91	Excitation of Mars polar motion. Astronomy and Astrophysics, 2006, 446, 345-355.	2.1	12
92	Does the magnetic field in the fluid core contribute a lot to Earth nutation?. Proceedings of the International Astronomical Union, 2006, 2, 483-483.	0.0	0
93	A top-down origin for martian mantle plumes. Icarus, 2006, 185, 197-210.	1.1	35
94	The effects of seasonal mass redistribution and interior structure on Length-of-Day variations of Mars. Advances in Space Research, 2006, 38, 739-744.	1.2	14
95	The effect of a dense atmosphere on the tidally induced potential of Titan. Icarus, 2006, 183, 230-232.	1.1	1
96	Mercury libration determination and the link with the interior of the planet., 2006,,.		0
97	Interior structure of terrestrial planets: Modeling Mars' mantle and its electromagnetic, geodetic, and seismic properties. Journal of Geophysical Research, 2005, 110, .	3.3	68
98	Mars' time-variable gravity and its determination: Simulated geodesy experiments. Journal of Geophysical Research, 2005, 110 , .	3.3	25
99	Numerical simulations of a Mars geodesy network experiment: Effect of orbiter angular momentum desaturation on Mars' rotation estimation. Planetary and Space Science, 2004, 52, 965-975.	0.9	8
100	Tidally induced surface displacements, external potential variations, and gravity variations on Mars. lcarus, 2003, 161, 281-296.	1.1	52
101	Mercury's tides and interior structure. Journal of Geophysical Research, 2003, 108, .	3.3	47
102	Can a solid inner core of Mars be detected from observations of polar motion and nutation of Mars?. Journal of Geophysical Research, 2003, 108, .	3.3	20
103	Mars nutation resonance due to Free Inner Core Nutation. Journal of Geophysical Research, 2003, 108,	3.3	16
104	Nonadiabatic resonant dynamic tides and orbital evolution in close binaries. Astronomy and Astrophysics, 2003, 397, 973-985.	2.1	25
105	Degree-one displacements on Mars. Geophysical Research Letters, 2002, 29, 6-1.	1.5	3
106	Influence of triaxiality and second-order terms in flattenings on the rotation of terrestrial planets. Physics of the Earth and Planetary Interiors, 2002, 134, 17-33.	0.7	33
107	Influence of the seasonal winds and the CO2mass exchange between atmosphere and polar caps on Mars' rotation. Journal of Geophysical Research, 2002, 107, 9-1.	3.3	38
108	The netlander ionosphere and geodesy experiment. Advances in Space Research, 2001, 28, 1237-1249.	1.2	31

#	Article	IF	CITATIONS
109	Steady-state convection in Mars' mantle. Planetary and Space Science, 2001, 49, 501-509.	0.9	16
110	Chandler wobble and Free Core Nutation for Mars. Planetary and Space Science, 2000, 48, 1145-1151.	0.9	36
111	Comparison Between the Nutations of the Planet Mars and the Nutations of the Earth. Surveys in Geophysics, 2000, 21, 89-110.	2.1	25
112	Theory of Amplitude Modulation II. The Resonant Mode Interaction Model. International Astronomical Union Colloquium, 2000, 176, 307-312.	0.1	2
113	Computation of Mars' transfer functions for nutations, tides and surface loading. Physics of the Earth and Planetary Interiors, 2000, 117, 385-395.	0.7	36
114	Sensitivity of the Free Core Nutation and the Chandler Wobble to changes in the interior structure of Mars. Physics of the Earth and Planetary Interiors, 2000, 117, 397-405.	0.7	36
115	Mars rotation variations induced by atmosphere and ice caps. Journal of Geophysical Research, 2000, 105, 24563-24570.	3.3	45
116	Unstable non-radial modes in radial pulsators: theory and an example. Monthly Notices of the Royal Astronomical Society, 1998, 297, 536-544.	1.6	71
117	Interiors of Earth-Like Planets and Satellites of the Solar System. Surveys in Geophysics, 0 , , 1 .	2.1	5