
Evaggelia Liaskou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7094927/publications.pdf Version: 2024-02-01

EVACCEUA LIASKOU

#	Article	IF	CITATIONS
1	Overview of methodologies for T-cell receptor repertoire analysis. BMC Biotechnology, 2017, 17, 61.	3.3	259
2	NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease. Gut, 2012, 61, 1323-1329.	12.1	231
3	Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis. Hepatology, 2011, 53, 106-115.	7.3	224
4	Monocyte subsets in human liver disease show distinct phenotypic and functional characteristics. Hepatology, 2013, 57, 385-398.	7.3	208
5	Innate Immune Cells in Liver Inflammation. Mediators of Inflammation, 2012, 2012, 1-21.	3.0	176
6	CXCR3-dependent recruitment and CCR6-mediated positioning of Th-17 cells in the inflamed liver. Journal of Hepatology, 2012, 57, 1044-1051.	3.7	167
7	MerTK expressing hepatic macrophages promote the resolution of inflammation in acute liver failure. Gut, 2018, 67, 333-347.	12.1	150
8	Highâ€throughput Tâ€cell receptor sequencing across chronic liver diseases reveals distinct diseaseâ€associated repertoires. Hepatology, 2016, 63, 1608-1619.	7.3	104
9	Regulation of mucosal addressin cell adhesion molecule 1 expression in human and mice by vascular adhesion protein 1 amine oxidase activity. Hepatology, 2011, 53, 661-672.	7.3	93
10	Loss of CD28 Expression by Liver-Infiltrating T Cells Contributes to Pathogenesis of Primary Sclerosing Cholangitis. Gastroenterology, 2014, 147, 221-232.e7.	1.3	81
11	CX3CR1 and vascular adhesion protein-1-dependent recruitment of CD16+ monocytes across human liver sinusoidal endothelium. Hepatology, 2010, 51, 2030-2039.	7.3	79
12	CCL25 and CCL28 promote α ₄ β ₇ -integrin-dependent adhesion of lymphocytes to MAdCAM-1 under shear flow. American Journal of Physiology - Renal Physiology, 2008, 294, G1257-G1267.	3.4	64
13	Mechanisms of tissue injury in autoimmune liver diseases. Seminars in Immunopathology, 2014, 36, 553-568.	6.1	60
14	Anti-GP2 IgA autoantibodies are associated with poor survival and cholangiocarcinoma in primary sclerosing cholangitis. Gut, 2017, 66, 137-144.	12.1	59
15	Lymphocyte homing and its role in the pathogenesis of IBD. Inflammatory Bowel Diseases, 2008, 14, 1298-1312.	1.9	58
16	Vascular adhesion protein-1 is elevated in primary sclerosing cholangitis, is predictive of clinical outcome and facilitates recruitment of gut-tropic lymphocytes to liver in a substrate-dependent manner. Gut, 2018, 67, 1135-1145.	12.1	52
17	Circulating markers of gut barrier function associated with disease severity in primary sclerosing cholangitis. Liver International, 2019, 39, 371-381.	3.9	51
18	Downregulation of TGR5 (GPBAR1) in biliary epithelial cells contributes to the pathogenesis of sclerosing cholangitis. Journal of Hepatology, 2021, 75, 634-646.	3.7	51

Evaggelia Liaskou

#	Article	IF	CITATIONS
19	Gut and liver T-cells of common clonal origin in primary sclerosing cholangitis-inflammatory bowel disease. Journal of Hepatology, 2017, 66, 116-122.	3.7	49
20	Phenotyping and auto-antibody production by liver-infiltrating B cells in primary sclerosing cholangitis and primary biliary cholangitis. Journal of Autoimmunity, 2017, 77, 45-54.	6.5	42
21	Increased sensitivity of Treg cells from patients with PBC to low dose IL-12 drives their differentiation into IFN-Î ³ secreting cells. Journal of Autoimmunity, 2018, 94, 143-155.	6.5	38
22	Bidirectional transendothelial migration of monocytes across hepatic sinusoidal endothelium shapes monocyte differentiation and regulates the balance between immunity and tolerance in liver. Hepatology, 2016, 63, 233-246.	7.3	36
23	Genetics in PSC: What Do the "Risk Genes―Teach Us?. Clinical Reviews in Allergy and Immunology, 2015, 48, 154-164.	6.5	27
24	Intrahepatic macrophage populations in the pathophysiology of primary sclerosing cholangitis. JHEP Reports, 2019, 1, 369-376.	4.9	27
25	Dysregulated hepatic expression of glucose transporters in chronic disease: contribution of semicarbazide-sensitive amine oxidase to hepatic glucose uptake. American Journal of Physiology - Renal Physiology, 2014, 307, G1180-G1190.	3.4	22
26	An In Vitro Model of Human Acute Ethanol Exposure That Incorporates CXCR3- and CXCR4-Dependent Recruitment of Immune Cells. Toxicological Sciences, 2013, 132, 131-141.	3.1	21
27	Cirrhosis-associated immune dysfunction: Novel insights in impaired adaptive immunity. EBioMedicine, 2019, 50, 3-4.	6.1	21
28	Gut and Liver B Cells of Common Clonal Origin in Primary Sclerosing Cholangitis–Inflammatory Bowel Disease. Hepatology Communications, 2018, 2, 960-971.	4.3	13
29	Genetic Distinctions in Patients With Primary Sclerosing Cholangitis: Immunoglobulin G4 Elevations and HLA Risk. Gastroenterology, 2015, 148, 886-889.	1.3	5
30	Genetic association studies and the risk factors for developing the "Immunoâ€bileâ€logic†disease primary biliary cholangitis. Hepatology, 2018, 67, 1620-1622.	7.3	5
31	Mucosal immunity in primary sclerosing cholangitis: from the bowel to bile ducts and back again. Current Opinion in Gastroenterology, 2022, 38, 104-113.	2.3	5
32	Genetic variation at the CD28 locus and its impact on expansion of pro-inflammatory CD28 negative T cells in healthy individuals. Scientific Reports, 2017, 7, 7652.	3.3	4
33	P89 Osteopontin promotes lymphocyte recruitment in steatohepatitis. Gut, 2011, 60, A41-A41.	12.1	0
34	Therapeutic potential of vascular adhesion protein in primary sclerosing cholangitis. Lancet, The, 2014, 383, S102.	13.7	0
35	PWE-046â€TH17 cells dominate the colonic mucosal immune response in primary sclerosing cholangitis associated colitis. , 2018, , .		0
36	THU-013-Investigating the potential immunomodulatory role of mesenchymal stromal cells in primary sclerosing cholangitis. Journal of Hepatology, 2019, 70, e166.	3.7	0