Zheng-Xiong Xi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/709456/publications.pdf

Version: 2024-02-01

132 papers	7,846 citations	47006 47 h-index	83 g-index
134	134	134	6204
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Origin and Neuronal Function of <i>In Vivo </i> Nonsynaptic Glutamate. Journal of Neuroscience, 2002, 22, 9134-9141.	3. 6	531
2	Brain cannabinoid CB2 receptors modulate cocaine's actions in mice. Nature Neuroscience, 2011, 14, 1160-1166.	14.8	358
3	Local Cues Establish and Maintain Region-Specific Phenotypes of Basal Ganglia Microglia. Neuron, 2017, 95, 341-356.e6.	8.1	325
4	The role of central dopamine D3 receptors in drug addiction: a review of pharmacological evidence. Brain Research Reviews, 2005, 49, 77-105.	9.0	296
5	Cannabinoid CB ₂ receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5007-15.	7.1	291
6	Cannabinoid Type 2 Receptors Mediate a Cell Type-Specific Plasticity in the Hippocampus. Neuron, 2016, 90, 795-809.	8.1	238
7	Species differences in cannabinoid receptor 2 (<i>CNR2</i> gene): identification of novel human and rodent CB2 isoforms, differential tissue expression and regulation by cannabinoid receptor ligands. Genes, Brain and Behavior, 2009, 8, 519-530.	2.2	214
8	Group II Metabotropic Glutamate Receptors Modulate Extracellular Glutamate in the Nucleus Accumbens. Journal of Pharmacology and Experimental Therapeutics, 2002, 300, 162-171.	2.5	197
9	Agents in Development for the Management of Cocaine Abuse. Drugs, 2004, 64, 1547-1573.	10.9	185
10	Modulation of Group II Metabotropic Glutamate Receptor Signaling by Chronic Cocaine. Journal of Pharmacology and Experimental Therapeutics, 2002, 303, 608-615.	2.5	171
11	Cannabinoid CB1 Receptor Antagonist AM251 Inhibits Cocaine-Primed Relapse in Rats: Role of Glutamate in the Nucleus Accumbens. Journal of Neuroscience, 2006, 26, 8531-8536.	3.6	155
12	Blockade of mesolimbic dopamine D3 receptors inhibits stress-induced reinstatement of cocaine-seeking in rats. Psychopharmacology, 2004, 176, 57-65.	3.1	151
13	The Novel Dopamine D3 Receptor Antagonist NGB 2904 Inhibits Cocaine's Rewarding Effects and Cocaine-Induced Reinstatement of Drug-Seeking Behavior in Rats. Neuropsychopharmacology, 2006, 31, 1393-1405.	5.4	140
14	Progress in brain cannabinoid CB2 receptor research: From genes to behavior. Neuroscience and Biobehavioral Reviews, 2019, 98, 208-220.	6.1	139
15	Selective dopamine D3receptor antagonism by SB-277011A attenuates cocaine reinforcement as assessed by progressive-ratio and variable-cost-variable-payoff fixed-ratio cocaine self-administration in rats. European Journal of Neuroscience, 2005, 21, 3427-3438.	2.6	133
16	Acute administration of SB-277011A, NGB 2904, or BP 897 inhibits cocaine cue-induced reinstatement of drug-seeking behavior in rats: Role of dopamine D3 receptors. Synapse, 2005, 57, 17-28.	1,2	132
17	GABA Transmission in the Nucleus Accumbens Is Altered after Withdrawal from Repeated Cocaine. Journal of Neuroscience, 2003, 23, 3498-3505.	3.6	123
18	Cannabinoid type 2 receptors in dopamine neurons inhibits psychomotor behaviors, alters anxiety, depression and alcohol preference. Scientific Reports, 2017, 7, 17410.	3.3	122

#	Article	IF	CITATIONS
19	Expression of functional cannabinoid CB ₂ receptor in VTA dopamine neurons in rats. Addiction Biology, 2017, 22, 752-765.	2.6	117
20	Species Differences in Cannabinoid Receptor 2 and Receptor Responses to Cocaine Self-Administration in Mice and Rats. Neuropsychopharmacology, 2015, 40, 1037-1051.	5.4	110
21	Cannabinoid CB1 Receptor Antagonists Attenuate Cocaine's Rewarding Effects: Experiments with Self-Administration and Brain-Stimulation Reward in Rats. Neuropsychopharmacology, 2008, 33, 1735-1745.	5.4	100
22	GABAergic MECHANISMS OF OPIATE REINFORCEMENT. Alcohol and Alcoholism, 2002, 37, 485-494.	1.6	97
23	Pharmacological Actions of NGB 2904, a Selective Dopamine D 3 Receptor Antagonist, in Animal Models of Drug Addiction. CNS Neuroscience & Therapeutics, 2007, 13, 240-259.	4.0	96
24	Sigma-1 receptor mediates cocaine-induced transcriptional regulation by recruiting chromatin-remodeling factors at the nuclear envelope. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6562-70.	7.1	95
25	YQA14: a novel dopamine D ₃ receptor antagonist that inhibits cocaine selfâ€administration in rats and mice, but not in D ₃ receptorâ€knockout mice. Addiction Biology, 2012, 17, 259-273.	2.6	85
26	Blockade of dopamine D ₃ receptors in the nucleus accumbens and central amygdala inhibits incubation of cocaine craving in rats. Addiction Biology, 2013, 18, 665-677.	2.6	83
27	The selective dopamine D3 receptor antagonist SB-277011A reduces nicotine-enhanced brain reward and nicotine-paired environmental cue functions. International Journal of Neuropsychopharmacology, 2006, 9, 585.	2.1	80
28	Cannabidiol attenuates the rewarding effects of cocaine in rats by CB2, 5-HT1A and TRPV1 receptor mechanisms. Neuropharmacology, 2020, 167, 107740.	4.1	75
29	Highly Selective Dopamine D ₃ Receptor (D ₃ R) Antagonists and Partial Agonists Based on Eticlopride and the D ₃ R Crystal Structure: New Leads for Opioid Dependence Treatment. Journal of Medicinal Chemistry, 2016, 59, 7634-7650.	6.4	73
30	Increased vulnerability to cocaine in mice lacking dopamine D ₃ receptors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17675-17680.	7.1	69
31	Hypothesis-Driven Medication Discovery for the Treatment of Psychostimulant Addiction. Current Drug Abuse Reviews, 2008, 1, 303-327.	3.4	68
32	Attenuation of basal and cocaine-enhanced locomotion and nucleus accumbens dopamine in cannabinoid CB1-receptor-knockout mice. Psychopharmacology, 2009, 204, 1-11.	3.1	68
33	The selective dopamine D3 receptor antagonists SB-277011A and NGB 2904 and the putative partial D3 receptor agonist BP-897 attenuate methamphetamine-enhanced brain stimulation reward in rats. Psychopharmacology, 2008, 196, 533-542.	3.1	65
34	Metabotropic Glutamate Receptor 7 Modulates the Rewarding Effects of Cocaine in Rats: Involvement of a Ventral Pallidal GABAergic Mechanism. Neuropsychopharmacology, 2009, 34, 1783-1796.	5.4	65
35	Discovery and development of varenicline for smoking cessation. Expert Opinion on Drug Discovery, 2018, 13, 671-683.	5.0	65
36	Lower glutamate levels in rostral anterior cingulate of chronic cocaine users — A 1H-MRS study using TE-averaged PRESS at 3ÂT with an optimized quantification strategy. Psychiatry Research - Neuroimaging, 2009, 174, 171-176.	1.8	63

3

#	Article	lF	Citations
37	Activation of mGluR7s inhibits cocaineâ€induced reinstatement of drugâ€seeking behavior by a nucleus accumbens glutamateâ€mGluR2/3 mechanism in rats. Journal of Neurochemistry, 2010, 114, 1368-1380.	3.9	63
38	Dopamine D3R antagonist VK4-116 attenuates oxycodone self-administration and reinstatement without compromising its antinociceptive effects. Neuropsychopharmacology, 2019, 44, 1415-1424.	5.4	61
39	Dissecting the Role of GABA Neurons in the VTA <i>versus</i> SNr in Opioid Reward. Journal of Neuroscience, 2020, 40, 8853-8869.	3.6	61
40	Novel and High Affinity 2-[(Diphenylmethyl)sulfinyl]acetamide (Modafinil) Analogues as Atypical Dopamine Transporter Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 10676-10691.	6.4	58
41	Dopamine D3 receptor antagonist SB-277011A inhibits methamphetamine self-administration and methamphetamine-induced reinstatement of drug-seeking in rats. European Journal of Pharmacology, 2011, 659, 187-192.	3.5	57
42	PG01037, a novel dopamine D ₃ receptor antagonist, inhibits the effects of methamphetamine in rats. Journal of Psychopharmacology, 2011, 25, 263-273.	4.0	57
43	The metabotropic glutamate receptor 7 (mGluR7) allosteric agonist AMN082 modulates nucleus accumbens GABA and glutamate, but not dopamine, in rats. Neuropharmacology, 2008, 54, 542-551.	4.1	54
44	Cannabinoid CB ₁ and CB ₂ receptor mechanisms underlie cannabis reward and aversion in rats. British Journal of Pharmacology, 2019, 176, 1268-1281.	5.4	54
45	Varenicline attenuates nicotine-enhanced brain-stimulation reward by activation of $\hat{l}\pm4\hat{l}^22$ nicotinic receptors in rats. Neuropharmacology, 2009, 57, 60-66.	4.1	52
46	Inhibition of NAALADase by 2â€PMPA attenuates cocaineâ€induced relapse in rats: a NAAGâ€mGluR2/3â€mediat mechanism. Journal of Neurochemistry, 2010, 112, 564-576.	ed 3.9	51
47	Aggregated single-walled carbon nanotubes attenuate the behavioural and neurochemical effects of methamphetamine in mice. Nature Nanotechnology, 2016, 11, 613-620.	31.5	51
48	The highly selective dopamine D R antagonist, R-VK4-40 attenuates oxycodone reward and augments analgesia in rodents. Neuropharmacology, 2019, 158, 107597.	4.1	51
49	The novel dopamine D3 receptor antagonists/partial agonists CAB2-015 and BAK4-54 inhibit oxycodone-taking and oxycodone-seeking behavior in rats. Neuropharmacology, 2017, 126, 190-199.	4.1	50
50	The preferential dopamine D3 receptor antagonist S33138 inhibits cocaine reward and cocaine-triggered relapse to drug-seeking behavior in rats. Neuropharmacology, 2009, 56, 752-760.	4.1	49
51	CB1 Receptor Activation on VgluT2-Expressing Glutamatergic Neurons Underlies î"9-Tetrahydrocannabinol (î"9-THC)-Induced Aversive Effects in Mice. Scientific Reports, 2017, 7, 12315.	3.3	48
52	N-acetylaspartylglutamate (NAAG) inhibits intravenous cocaine self-administration and cocaine-enhanced brain-stimulation reward in rats. Neuropharmacology, 2010, 58, 304-313.	4.1	45
53	High Affinity Dopamine D ₃ Receptor (D ₃ R)-Selective Antagonists Attenuate Heroin Self-Administration in Wild-Type but not D ₃ R Knockout Mice. Journal of Medicinal Chemistry, 2015, 58, 6195-6213.	6.4	45
54	Levo-tetrahydropalmatine inhibits cocaine's rewarding effects: Experiments with self-administration and brain-stimulation reward in rats. Neuropharmacology, 2007, 53, 771-782.	4.1	44

#	Article	IF	CITATIONS
55	Progress in agonist therapy for substance use disorders: Lessons learned from methadone and buprenorphine. Neuropharmacology, 2019, 158, 107609.	4.1	44
56	Mechanisms of cannabinoid CB2 receptor-mediated reduction of dopamine neuronal excitability in mouse ventral tegmental area. EBioMedicine, 2019, 42, 225-237.	6.1	44
57	CB2 receptor antibody signal specificity: correlations with the use of partial CB2-knockout mice and anti-rat CB2 receptor antibodies. Acta Pharmacologica Sinica, 2019, 40, 398-409.	6.1	42
58	Inhibition of non-vesicular glutamate release by group III metabotropic glutamate receptors in the nucleus accumbens. Journal of Neurochemistry, 2003, 87, 1204-1212.	3.9	41
59	Potential of Cannabinoid Receptor Ligands as Treatment for Substance Use Disorders. CNS Drugs, 2019, 33, 1001-1030.	5.9	40
60	Opiate tolerance by heroin self-administration: An fMRI study in rat. Magnetic Resonance in Medicine, 2004, 52, 108-114.	3.0	37
61	Blockade of D3 receptors by YQA14 inhibits cocaine's rewarding effects and relapse to drug-seeking behavior in rats. Neuropharmacology, 2014, 77, 398-405.	4.1	37
62	Cannabinoid CB1 receptor neutral antagonist AM4113 inhibits heroin self-administration without depressive side effects in rats. Acta Pharmacologica Sinica, 2019, 40, 365-373.	6.1	37
63	Different receptor mechanisms underlying phytocannabinoid―versus synthetic cannabinoid―nduced tetrad effects: Opposite roles of CB ₁ /CB ₂ versus GPR55 receptors. British Journal of Pharmacology, 2020, 177, 1865-1880.	5.4	36
64	New Drugs, Old Targets: Tweaking the Dopamine System to Treat Psychostimulant Use Disorders. Annual Review of Pharmacology and Toxicology, 2021, 61, 609-628.	9.4	36
65	Mechanism-based medication development for the treatment of nicotine dependence. Acta Pharmacologica Sinica, 2009, 30, 723-739.	6.1	35
66	Dopamine D3 receptor deletion or blockade attenuates cocaine-induced conditioned place preference in mice. Neuropharmacology, 2013, 72, 82-87.	4.1	35
67	Translating the atypical dopamine uptake inhibitor hypothesis toward therapeutics for treatment of psychostimulant use disorders. Neuropsychopharmacology, 2019, 44, 1435-1444.	5.4	35
68	Attenuation of brain response to heroin correlates with the reinstatement of heroin-seeking in rats by fMRI. Neurolmage, 2004, 22, 1328-1335.	4.2	34
69	A novel <scp>mGluR5</scp> antagonist, <scp>MFZ</scp> 10â€7, inhibits cocaineâ€taking and cocaineâ€seeking behavior in rats. Addiction Biology, 2014, 19, 195-209.	2.6	34
70	Genetic deletion of vesicular glutamate transporter in dopamine neurons increases vulnerability to MPTP-induced neurotoxicity in mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11532-E11541.	7.1	34
71	A single high dose of methamphetamine increases cocaine self-administration by depletion of striatal dopamine in rats. Neuroscience, 2009, 161, 392-402.	2.3	33
72	Fenobam sulfate inhibits cocaine-taking and cocaine-seeking behavior in rats: implications for addiction treatment in humans. Psychopharmacology, 2013, 229, 253-265.	3.1	33

#	Article	IF	Citations
73	Cocaine reward is reduced by decreased expression of receptor-type protein tyrosine phosphatase D (PTPRD) and by a novel PTPRD antagonist. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11597-11602.	7.1	33
74	mGluR5 antagonism inhibits cocaine reinforcement and relapse by elevation of extracellular glutamate in the nucleus accumbens via a CB1 receptor mechanism. Scientific Reports, 2018, 8, 3686.	3.3	32
75	Investigation of Novel Primary and Secondary Pharmacophores and 3-Substitution in the Linking Chain of a Series of Highly Selective and Bitopic Dopamine D ₃ Receptor Antagonists and Partial Agonists. Journal of Medicinal Chemistry, 2019, 62, 9061-9077.	6.4	30
76	Cannabidiol inhibits sucrose selfâ€administration by <scp>CB</scp> 1 and <scp>CB</scp> 2 receptor mechanisms in rodents. Addiction Biology, 2020, 25, e12783.	2.6	30
77	The Novel Modafinil Analog, JJC8-016, as a Potential Cocaine Abuse Pharmacotherapeutic. Neuropsychopharmacology, 2017, 42, 1871-1883.	5.4	29
78	Deletion of Type 2 Metabotropic Glutamate Receptor Decreases Sensitivity to Cocaine Reward in Rats. Cell Reports, 2017, 20, 319-332.	6.4	28
79	Dopamine D3 receptor-based medication development for the treatment of opioid use disorder: Rationale, progress, and challenges. Neuroscience and Biobehavioral Reviews, 2020, 114, 38-52.	6.1	27
80	Gamma-vinyl GABA inhibits cocaine-triggered reinstatement of drug-seeking behavior in rats by a non-dopaminergic mechanism. Drug and Alcohol Dependence, 2008, 97, 216-225.	3.2	26
81	Is Slow-Onset Long-Acting Monoamine Transport Blockade to Cocaine as Methadone is to Heroin? Implication for Anti-Addiction Medications. Neuropsychopharmacology, 2010, 35, 2564-2578.	5.4	26
82	Effects of gabapentin on cocaine self-administration, cocaine-triggered relapse and cocaine-enhanced nucleus accumbens dopamine in rats. Drug and Alcohol Dependence, 2008, 97, 207-215.	3.2	24
83	Oral administration of the NAALADase inhibitor GPI-5693 attenuates cocaine-induced reinstatement of drug-seeking behavior in rats. European Journal of Pharmacology, 2010, 627, 156-161.	3.5	24
84	Newly Developed Dopamine D ₃ Receptor Antagonists, <i>R</i> -VK4-40 and <i>R</i> -VK4-116, Do Not Potentiate Cardiovascular Effects of Cocaine or Oxycodone in Rats. Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 602-614.	2.5	24
85	Possible Receptor Mechanisms Underlying Cannabidiol Effects on Addictive-like Behaviors in Experimental Animals. International Journal of Molecular Sciences, 2021, 22, 134.	4.1	24
86	βâ€Caryophyllene, a dietary terpenoid, inhibits nicotine taking and nicotine seeking in rodents. British Journal of Pharmacology, 2020, 177, 2058-2072.	5.4	21
87	Genetic deletion of the dopamine D3 receptor increases vulnerability to heroin in mice. Neuropharmacology, 2018, 141, 11-20.	4.1	20
88	Modafinil and its structural analogs as atypical dopamine uptake inhibitors and potential medications for psychostimulant use disorder. Current Opinion in Pharmacology, 2021, 56, 13-21.	3.5	20
89	Cannabinoid CB2 receptors are expressed in glutamate neurons in the red nucleus and functionally modulate motor behavior in mice. Neuropharmacology, 2021, 189, 108538.	4.1	20
90	Preclinical pharmacology, efficacy, and safety of varenicline in smoking cessation and clinical utility in high risk patients. Drug, Healthcare and Patient Safety, 2010, 2010, 39.	2.5	19

#	Article	IF	Citations
91	Neurochemical and behavioral comparisons of contingent and non-contingent methamphetamine exposure following binge or yoked long-access self-administration paradigms. Psychopharmacology, 2020, 237, 1989-2005.	3.1	19
92	Beta-caryophyllene inhibits cocaine addiction-related behavior by activation of PPARα and PPARÎ3: repurposing a FDA-approved food additive for cocaine use disorder. Neuropsychopharmacology, 2021, 46, 860-870.	5.4	19
93	Optogenetic brainâ€stimulation reward: A new procedure to reâ€evaluate the rewarding <i>versus</i> aversive effects of cannabinoids in dopamine transporterâ€Cre mice. Addiction Biology, 2021, 26, e13005.	2.6	19
94	Metabotropic glutamate 7 (mGlu7) receptor: A target for medication development for the treatment of cocaine dependence. Neuropharmacology, 2013, 66, 12-23.	4.1	18
95	Combination of Levo-Tetrahydropalmatine and Low Dose Naltrexone: A Promising Treatment for Prevention of Cocaine Relapse. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 248-257.	2.5	18
96	Deletion of the type 2 metabotropic glutamate receptor increases heroin abuse vulnerability in transgenic rats. Neuropsychopharmacology, 2018, 43, 2615-2626.	5.4	18
97	Dissecting the role of CB1 and CB2 receptors in cannabinoid reward versus aversion using transgenic CB1- and CB2-knockout mice. European Neuropsychopharmacology, 2021, 43, 38-51.	0.7	18
98	R-Modafinil Attenuates Nicotine-Taking and Nicotine-Seeking Behavior in Alcohol-Preferring Rats. Neuropsychopharmacology, 2015, 40, 1762-1771.	5.4	16
99	T394A Mutation at the $\hat{l}^{1}\!\!/\!\!4$ Opioid Receptor Blocks Opioid Tolerance and Increases Vulnerability to Heroin Self-Administration in Mice. Journal of Neuroscience, 2016, 36, 10392-10403.	3.6	16
100	Progress in opioid reward research: From a canonical two-neuron hypothesis to two neural circuits. Pharmacology Biochemistry and Behavior, 2021, 200, 173072.	2.9	16
101	(±)VK4â€40, a novel dopamine D ₃ receptor partial agonist, attenuates cocaine reward and relapse in rodents. British Journal of Pharmacology, 2020, 177, 4796-4807.	5.4	15
102	Identification of novel mouse and rat CB1R isoforms and in silico modeling of human CB1R for peripheral cannabinoid therapeutics. Acta Pharmacologica Sinica, 2019, 40, 387-397.	6.1	14
103	Xie2-64, a novel CB2 receptor inverse agonist, reduces cocaine abuse-related behaviors in rodents. Neuropharmacology, 2020, 176, 108241.	4.1	13
104	Modafinil potentiates cocaine self-administration by a dopamine-independent mechanism: possible involvement of gap junctions. Neuropsychopharmacology, 2020, 45, 1518-1526.	5.4	13
105	Repeated cocaine administration upregulates CB2 receptor expression in striatal medium-spiny neurons that express dopamine D1 receptors in mice. Acta Pharmacologica Sinica, 2022, 43, 876-888.	6.1	13
106	Involvement of the ghrelin system in the maintenance and reinstatement of cocaine-motivated behaviors: a role of adrenergic action at peripheral \hat{l}^21 receptors. Neuropsychopharmacology, 2022, 47, 1449-1460.	5.4	13
107	Effects of metabotropic glutamate receptor ligands on male sexual behavior in rats. Neuropharmacology, 2013, 66, 373-381.	4.1	12
108	Increased novelty-induced locomotion, sensitivity to amphetamine, and extracellular dopamine in striatum of Zdhhc15-deficient mice. Translational Psychiatry, 2021, 11, 65.	4.8	12

7

#	Article	IF	CITATIONS
109	Î ² -caryophyllene, an FDA-Approved Food Additive, Inhibits Methamphetamine-Taking and Methamphetamine-Seeking Behaviors Possibly via CB2 and Non-CB2 Receptor Mechanisms. Frontiers in Pharmacology, 2021, 12, 722476.	3.5	12
110	Effects of the selective dopamine D3 receptor antagonist PG01037 on morphine-induced hyperactivity and antinociception in mice. Behavioural Brain Research, 2021, 415, 113506.	2.2	12
111	CTDP-32476: A Promising Agonist Therapy for Treatment of Cocaine Addiction. Neuropsychopharmacology, 2017, 42, 682-694.	5.4	11
112	Δ 8 â€Tetrahydrocannabivarin has potent antiâ€nicotine effects in several rodent models of nicotine dependence. British Journal of Pharmacology, 2019, 176, 4773-4784.	5.4	11
113	Current Perspectives on Selective Dopamine D3 Receptor Antagonists/Partial Agonists as Pharmacotherapeutics for Opioid and Psychostimulant Use Disorders. Current Topics in Behavioral Neurosciences, 2022, , 157-201.	1.7	11
114	Involvement of the ghrelin system in the maintenance of oxycodone self-administration: converging evidence from endocrine, pharmacologic and transgenic approaches. Molecular Psychiatry, 2022, 27, 2171-2181.	7.9	9
115	Gamma-vinyl GABA increases nonvesicular release of GABA and glutamate in the nucleus accumbens in rats via action on anion channels and GABA transporters. Psychopharmacology, 2010, 208, 511-519.	3.1	8
116	Deletion of VGLUT2 in midbrain dopamine neurons attenuates dopamine and glutamate responses to methamphetamine in mice. Pharmacology Biochemistry and Behavior, 2021, 202, 173104.	2.9	8
117	Elevation of Extracellular Glutamate by Blockade of Astrocyte Glutamate Transporters Inhibits Cocaine Reinforcement in Rats via a NMDA-GluN2B Receptor Mechanism. Journal of Neuroscience, 2022, 42, 2327-2343.	3.6	8
118	Receptor mechanisms underlying the CNS effects of cannabinoids: CB1 receptor and beyond. Advances in Pharmacology, 2022, 93, 275-333.	2.0	8
119	Identification of the Risk Genes Associated With Vulnerability to Addiction: Major Findings From Transgenic Animals. Frontiers in Neuroscience, 2021, 15, 811192.	2.8	6
120	Synaptic Zn2+ potentiates the effects of cocaine on striatal dopamine neurotransmission and behavior. Translational Psychiatry, 2021, 11, 570.	4.8	3
121	Therapeutic potential of PIMSR, a novel CB1 receptor neutral antagonist, for cocaine use disorder: evidence from preclinical research. Translational Psychiatry, 2022, 12, .	4.8	3
122	Cocaine-taking and cocaine-seeking behaviors in rats remain stable after systemic administration of GYKI 52466: A non-competitive AMPA receptor antagonist. Neuroscience Letters, 2012, 508, 106-109.	2.1	2
123	Opiate Self-Administration. , 2003, 84, 251-264.		1
124	Mitochondrial Clk1-iron-DAT regulation pathway: a possible new therapeutic target for methamphetamine use disorder. Acta Pharmacologica Sinica, 2021, , .	6.1	1
125	Medication Development for the Treatment of Cocaine Addiction $\hat{a} \in \text{``Progress at Preclinical and Clinical Levels.'}, 2012, , .$		0
126	Methadone Usage, Misuse, and Addiction Processes. , 2016, , 399-406.		0

#	Article	IF	CITATIONS
127	Pharmacology in the age of circuit neuroscience: Illuminating the neural mechanisms of reward, drug use and addiction and enlightening the future of translational research. Pharmacology Biochemistry and Behavior, 2021, 206, 173187.	2.9	0
128	Beyond small-molecule SAR: Using the dopamine D3 receptor crystal structure to guide drug design. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY20-2.	0.0	0
129	Mechanisms of Cannabinoid CB2 Receptor-Mediated Reduction of Dopamine Neuronal Excitability in Mouse Ventral Tegmental Area. SSRN Electronic Journal, 0, , .	0.4	O
130	Structurally Similar and Behaviorally Unique Modafinil Analogs as Potential Pharmacotherapeutics for Psychostimulant Use Disorder. FASEB Journal, 2019, 33, 664.6.	0.5	0
131	Betaâ€caryophyllene, a Volatile Phytocannabinoid, Attenuates Cocaine Selfâ€administration and Relapse in Rats. FASEB Journal, 2020, 34, 1-1.	0.5	O
132	Gap Junctions Modulate The Effects Of Modafinil On Cocaine Selfâ€Administration Behavior In A Dopamineâ€Independent Fashion In Rats. FASEB Journal, 2020, 34, 1-1.	0.5	0