Michael Anthony Djordjevic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7094300/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A new method to visualize CEP hormone–CEP receptor interactions in vascular tissue <i>in vivo</i> . Journal of Experimental Botany, 2021, 72, 6164-6174.	2.4	7
2	CEP receptor signalling controls root system architecture in Arabidopsis and Medicago. New Phytologist, 2020, 226, 1809-1821.	3.5	35
3	Improving the Identification and Coverage of Plant Transmembrane Proteins in Medicago Using Bottom–Up Proteomics. Frontiers in Plant Science, 2020, 11, 595726.	1.7	2
4	The NIN transcription factor coordinates CEP and CLE signaling peptides that regulate nodulation antagonistically. Nature Communications, 2020, 11, 3167.	5.8	79
5	The Peptide Hormone Receptor CEPR1 Functions in the Reproductive Tissue to Control Seed Size and Yield. Plant Physiology, 2020, 183, 620-636.	2.3	17
6	CEP3 levels affect starvation-related growth responses of the primary root. Journal of Experimental Botany, 2019, 70, 4763-4774.	2.4	32
7	CEP–CEPR1 signalling inhibits the sucrose-dependent enhancement of lateral root growth. Journal of Experimental Botany, 2019, 70, 3955-3967.	2.4	37
8	CLE peptide triâ€arabinosylation and peptide domain sequence composition are essential for SUNNâ€dependent autoregulation of nodulation in <i>Medicago truncatula</i> . New Phytologist, 2018, 218, 73-80.	3.5	60
9	CEP peptide hormones: key players in orchestrating nitrogen-demand signalling, root nodulation, and lateral root development. Journal of Experimental Botany, 2018, 69, 1829-1836.	2.4	72
10	Diverse Peptide Hormones Affecting Root Growth Identified in the Medicago truncatula Secreted Peptidome. Molecular and Cellular Proteomics, 2018, 17, 160-174.	2.5	57
11	Promotion of mammalian angiogenesis by neolignans derived from soybean extracellular fluids. PLoS ONE, 2018, 13, e0196843.	1.1	2
12	New role for a CEP peptide and its receptor: complex control of lateral roots. Journal of Experimental Botany, 2016, 67, 4797-4799.	2.4	16
13	Factors Altering Pyruvate Excretion in a Glycogen Storage Mutant of the Cyanobacterium, Synechococcus PCC7942. Frontiers in Microbiology, 2016, 7, 475.	1.5	18
14	Different Pathways Act Downstream of the CEP Peptide Receptor CRA2 to Regulate Lateral Root and Nodule Development. Plant Physiology, 2016, 171, 2536-2548.	2.3	100
15	Root-to-shoot signalling: integration of diverse molecules, pathways and functions. Functional Plant Biology, 2016, 43, 87.	1.1	107
16	The plant detectives: innovative undergraduate teaching to inspire the next generation of plant biologists. Frontiers in Plant Science, 2015, 6, 729.	1.7	4
17	Small-peptide signals that control root nodule number, development, and symbiosis. Journal of Experimental Botany, 2015, 66, 5171-5181.	2.4	56
18	Novel MtCEP1 peptides produced <i>in vivo</i> differentially regulate root development in <i>Medicago truncatula</i> . Journal of Experimental Botany, 2015, 66, 5289-5300.	2.4	84

#	Article	IF	CITATIONS
19	Lipo-Chitin Oligosaccharides, Plant Symbiosis Signalling Molecules That Modulate Mammalian Angiogenesis In Vitro. PLoS ONE, 2014, 9, e112635.	1.1	15
20	Diversification of the C-TERMINALLY ENCODED PEPTIDE (CEP) gene family in angiosperms, and evolution of plant-family specific CEP genes. BMC Genomics, 2014, 15, 870.	1.2	63
21	microRNA profiling of root tissues and root forming explant cultures in Medicago truncatula. Planta, 2013, 238, 91-105.	1.6	30
22	Alteration of flavonoid accumulation patterns in transparent testa mutants disturbs auxin transport, gravity responses, and imparts long-term effects on root and shoot architecture. Planta, 2013, 238, 171-189.	1.6	88
23	Analysis of central Hox protein types across bilaterian clades: On the diversification of central Hox proteins from an Antennapedia/Hox7-like protein. Developmental Biology, 2013, 383, 175-185.	0.9	10
24	CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants. Journal of Experimental Botany, 2013, 64, 5383-5394.	2.4	137
25	Solution NMR studies of the plant peptide hormone CEP inform function. FEBS Letters, 2013, 587, 3979-3985.	1.3	45
26	Temperature modulation of fatty acid profiles for biofuel production in nitrogen deprived Chlamydomonas reinhardtii. Bioresource Technology, 2013, 127, 441-447.	4.8	60
27	Regulation of Arabidopsis root development by small signaling peptides. Frontiers in Plant Science, 2013, 4, 352.	1.7	43
28	Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules. Frontiers in Plant Science, 2013, 4, 385.	1.7	40
29	The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula. Journal of Experimental Botany, 2013, 64, 5395-5409.	2.4	182
30	The Expression of Genes Encoding Secreted Proteins in Medicago truncatula A17 Inoculated Roots. HAYATI Journal of Biosciences, 2013, 20, 105-116.	0.1	0
31	Border sequences of Medicago truncatula CLE36 are specifically cleaved by endoproteases common to the extracellular fluids of Medicago and soybean. Journal of Experimental Botany, 2011, 62, 4649-4659.	2.4	34
32	Crosstalk between the nodulation signaling pathway and the autoregulation of nodulation in <i>Medicago truncatula</i> . New Phytologist, 2011, 190, 865-874.	3.5	66
33	Comparative proteomic profiles of the soybean (<i>Glycine max</i>) root apex and differentiated root zone. Proteomics, 2011, 11, 1707-1719.	1.3	42
34	Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. Bioresource Technology, 2011, 102, 3343-3351.	4.8	184
35	Flavonoids: New Roles for Old Molecules. Journal of Integrative Plant Biology, 2010, 52, 98-111.	4.1	587
36	Global gene expression analysis of in vitro root formation in Medicago truncatula. Functional Plant Biology, 2010, 37, 1117.	1.1	12

#	Article	IF	CITATIONS
37	Improving Hox Protein Classification across the Major Model Organisms. PLoS ONE, 2010, 5, e10820.	1.1	27
38	Architectural phenotypes in the transparent testa mutants of Arabidopsis thaliana. Journal of Experimental Botany, 2009, 60, 751-763.	2.4	125
39	Unintended changes in protein expression revealed by proteomic analysis of seeds from transgenic pea expressing a bean î±â€amylase inhibitor gene. Proteomics, 2009, 9, 4406-4415.	1.3	26
40	Mhp493 (P216) is a proteolytically processed, cilium and heparin binding protein of <i>Mycoplasma hyopneumoniae</i> . Molecular Microbiology, 2009, 71, 566-582.	1.2	62
41	Pongamia pinnata: An Untapped Resource for the Biofuels Industry of the Future. Bioenergy Research, 2008, 1, 2-11.	2.2	221
42	Characterization of the Secretome of Suspension Cultures of Medicago Species Reveals Proteins Important for Defense and Development. Journal of Proteome Research, 2008, 7, 4508-4520.	1.8	59
43	Implications of long-distance flavonoid movement in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2008, 3, 415-417.	1.2	49
44	Soybean Nodule Autoregulation Receptor Kinase Phosphorylates Two Kinase-associated Protein Phosphatases in Vitro. Journal of Biological Chemistry, 2008, 283, 25381-25391.	1.6	54
45	The <i>Glycine max</i> Xylem Sap and Apoplast Proteome. Journal of Proteome Research, 2007, 6, 3771-3779.	1.8	97
46	Flavonoids Are Differentially Taken Up and Transported Long Distances in Arabidopsis. Plant Physiology, 2007, 145, 478-490.	2.3	219
47	The Production of Species-Specific Highly Unsaturated Fatty Acyl-Containing LCOs from Rhizobium leguminosarum bv. trifolii Is Stringently Regulated by nodD and Involves the nodRL Genes. Molecular Plant-Microbe Interactions, 2006, 19, 215-226.	1.4	9
48	The Rhizobium leguminosarum biovar trifolii ANU794 Induces Novel Developmental Responses on the Subterranean Clover Cultivar Woogenellup. Molecular Plant-Microbe Interactions, 2006, 19, 471-479.	1.4	28
49	TheMedicago truncatulaSmall Protein Proteome and Peptidome. Journal of Proteome Research, 2006, 5, 3355-3367.	1.8	56
50	Proteolytic Processing of the Mycoplasma hyopneumoniae Cilium Adhesin. Infection and Immunity, 2004, 72, 2791-2802.	1.0	101
51	Probing for pH-Regulated Proteins in <i>Sinorhizobium medicae </i> Using Proteomic Analysis. Journal of Molecular Microbiology and Biotechnology, 2004, 7, 140-147.	1.0	19
52	Sinorhizobium meliloti metabolism in the root nodule: A proteomic perspective. Proteomics, 2004, 4, 1859-1872.	1.3	133
53	Proteomic Analysis of Legume–Microbe Interactions. Comparative and Functional Genomics, 2003, 4, 225-228.	2.0	29
54	A Global Analysis of Protein Expression Profiles in Sinorhizobium meliloti: Discovery of New Genes for Nodule Occupancy and Stress Adaptation. Molecular Plant-Microbe Interactions, 2003, 16, 508-524.	1.4	145

#	Article	IF	CITATIONS
55	Evaluation of proteome reference maps for cross-species identification of proteins by peptide mass fingerprinting. Proteomics, 2002, 2, 1288-1303.	1.3	60
56	Two novel chromosomal loci influence cultivar-specific nodulation failure in the interaction between strain ANU794 and subterranean clover cv. Woogenellup. Functional Plant Biology, 2002, 29, 473.	1.1	8
57	Proteome analysis of cultivar-specific interactions betweenRhizobium leguminosarum biovartrifolii and subterranean clover cultivar Woogenellup. Electrophoresis, 2001, 22, 586-598.	1.3	78
58	Establishment of a root proteome reference map for the model legumeMedicago truncatulausing the expressed sequence tag database for peptide mass fingerprinting. Proteomics, 2001, 1, 1424-1440.	1.3	227
59	Rhizobia Can Induce Nodules in White Clover by "Hijacking―Mature Cortical Cells Activated During Lateral Root Development. Molecular Plant-Microbe Interactions, 2000, 13, 170-182.	1.4	97
60	Identification ofnolR-regulated proteins inSinorhizobium meliloti using proteome analysis. Electrophoresis, 2000, 21, 3823-3832.	1.3	42
61	Proteome analysis demonstrates complex replicon and luteolin interactions in pSyma-cured derivatives ofSinorhizobium meliloti strain 2011. Electrophoresis, 2000, 21, 3833-3842.	1.3	52
62	Elevated Levels of Synthesis of over 20 Proteins Results after Mutation of the Rhizobium leguminosarumExopolysaccharide Synthesis Gene pssA. Journal of Bacteriology, 2000, 182, 4521-4532.	1.0	30
63	Proteome Analysis of Differentially Displayed Proteins As a Tool for the Investigation of Symbiosis. Molecular Plant-Microbe Interactions, 2000, 13, 995-1009.	1.4	182
64	Anthocyanin regulatory gene expression in transgenic white clover can result in an altered pattern of pigmentation. Functional Plant Biology, 2000, 27, 659.	1.1	4
65	Proteome analysis of the model microsymbiontSinorhizobium meliloti: Isolation and characterisation of novel proteins. Electrophoresis, 1999, 20, 818-825.	1.3	52
66	Proteome analysis of the model microsymbiont Sinorhizobium meliloti: Isolation and characterisation of novel proteins. , 1999, 20, 818.		2
67	Rhizobium purine auxotrophs, perturbed in nodulation, have multiple changes in protein synthesis. Functional Plant Biology, 1999, 26, 511.	1.1	4
68	Determination of plasmid-encoded functions inRhizobium leguminosarum biovartrifolii using proteome analysis of plasmid-cured derivatives. Electrophoresis, 1998, 19, 1972-1979.	1.3	21
69	Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant Journal, 1998, 14, 23-34.	2.8	455
70	Flavonoids Synthesized in Cortical Cells During Nodule Initiation Are Early Developmental Markers in White Clover. Molecular Plant-Microbe Interactions, 1998, 11, 1223-1232.	1.4	90
71	New Rhizobium leguminosarum Flavonoid-Induced Proteins Revealed by Proteome Analysis of Differentially Displayed Proteins. Molecular Plant-Microbe Interactions, 1997, 10, 506-516.	1.4	85
72	A convenient set of vectors for expression of multiple gene combinations in plants. Plant Molecular Biology Reporter, 1997, 15, 134-140.	1.0	3

#	Article	IF	CITATIONS
73	The inhibition of infection thread development in the cultivar-specific interaction ofRhizobium and subterranean clover is not caused by a hypersensitive response. Protoplasma, 1995, 185, 58-71.	1.0	15
74	Molecular genetic analysis of subterranean clover-microbe interactions. Soil Biology and Biochemistry, 1995, 27, 485-490.	4.2	4
75	Developmental and Environmental Regulation of Chalcone Synthase Expression in Subterranean Clover. Current Plant Science and Biotechnology in Agriculture, 1994, , 131-134.	0.0	Ο
76	Influence ofRhizobium leguminosarum biovartrifolii host specific nodulation genes on the ontogeny of clover nodulation. Protoplasma, 1993, 172, 166-179.	1.0	14
77	Microscopic analysis of the effect ofRhizobium leguminosarum biovartrifolii host specific nodulation genes in the infection of white clovers. Protoplasma, 1993, 172, 180-190.	1.0	6
78	Production and Excretion of Nod Metabolites by <i>Rhizobium leguminosarum</i> bv. trifolii Are Disrupted by the Same Environmental Factors That Reduce Nodulation in the Field. Applied and Environmental Microbiology, 1993, 59, 3385-3392.	1.4	103
79	An Analysis of Host Range Specificity Genes of Rhizobium as a Model System for Virulence Genes in Phytobacteria. Plant Gene Research, 1992, , 51-83.	0.4	3
80	nodT, a positively-acting cultivar specificity determinant controlling nodulation of Trifolium subterraneum by Rhizobium leguminosarum biovar trifolii. Plant Molecular Biology, 1991, 16, 515-526.	2.0	40
81	Construction of an Acid-Tolerant <i>Rhizobium leguminosarum</i> Biovar Trifolii Strain with Enhanced Capacity for Nitrogen Fixation. Applied and Environmental Microbiology, 1991, 57, 2005-2011.	1.4	47
82	Effects of pH, Ca and Al on the exudation from clover seedlings of compounds that induce the expression of nodulation genes inRhizobium trifolii. Plant and Soil, 1988, 109, 37-47.	1.8	89
83	Five genetic loci involved in the synthesis of acidic exopolysaccharides are closely linked in the genome of Rhizobium sp strain NGR234. Molecular Genetics and Genomics, 1988, 212, 310-316.	2.4	26
84	Host Specific Nodulation of Plants of the Pea Cross-inoculation Group is Influenced by Genes in Fast Growing Rhizobium downstream nodC. Journal of Plant Physiology, 1988, 132, 398-404.	1.6	20
85	Characterization of Aberrant Infection Events Induced on Trifolium subterraneum by Rhizobium trifolii Region II Mutants. Journal of Plant Physiology, 1988, 133, 16-24.	1.6	13
86	Early Recognition Signals in the Rhizobium Trifolii-White Clover Symbiosis. , 1988, , 183-187.		5
87	Expression of Nodulation Genes in <i>Rhizobium leguminosarum</i> biovar <i>trifolii</i> Is Affected by Low pH and by Ca and Al Ions. Applied and Environmental Microbiology, 1988, 54, 2541-2548.	1.4	102
88	The Isolation and Partial Characterization of the Lipopolysaccharides from Several Rhizobium trifolii Mutants Affected in Root Hair Infection. Plant Physiology, 1987, 84, 421-427.	2.3	40
89	Clovers secrete specific phenolic compounds which either stimulate or repress <i>nod</i> gene expression in <i>Rhizobium trifolii</i> . EMBO Journal, 1987, 6, 1173-1179.	3.5	221
90	Split-Root Assays Using <i>Trifolium subterraneum</i> Show that <i>Rhizobium</i> Infection Induces a Systemic Response That Can Inhibit Nodulation of Another Invasive <i>Rhizobium</i> Strain. Applied and Environmental Microbiology, 1987, 53, 1611-1619.	1.4	70

#	Article	IF	CITATIONS
91	Nodulation of specific legumes is controlled by several distinct loci in Rhizobium trifolii. Plant Molecular Biology, 1986, 6, 389-401.	2.0	47
92	Macroptilium atropurpureum (siratro) host specificity genes are linked to a nodD-like gene in the broad host range Rhizobium strain NGR234. Molecular Genetics and Genomics, 1986, 203, 49-57.	2.4	25
93	Flavones induce expression of nodulation genes in Rhizobium. Nature, 1986, 323, 632-635.	13.7	498
94	Flavones Induce Expression of the Nodulation Genes in Rhizobium. , 1986, , 115-121.		6
95	Tn5 mutagenesis of Rhizobium trifolii host-specific nodulation genes result in mutants with altered host-range ability. Molecular Genetics and Genomics, 1985, 200, 463-471.	2.4	135
96	Plant factors induce expression of nodulation and host-range genes in Rhizobium trifolii. Molecular Genetics and Genomics, 1985, 201, 426-432.	2.4	132
97	Rhizobium nodulation genes involved in root hair curling (Hac) are functionally conserved. Plant Molecular Biology, 1985, 4, 147-160.	2.0	67
98	A molecular linkage map of nitrogenase and nodulation genes in Rhizobium trifolii. Molecular Genetics and Genomics, 1983, 192, 459-465.	2.4	73