F Ternero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7093833/publications.pdf Version: 2024-02-01

		933447	552781
30	744	10	26
papers	citations	h-index	g-index
31	31	31	1204
all docs	docs citations	times ranked	citing authors

FTEDNEDO

#	Article	IF	CITATIONS
1	Capacitor Electrical Discharge Consolidation of Metallic Powders—A Review. Metals, 2021, 11, 616.	2.3	10
2	Influence of the Total Porosity on the Properties of Sintered Materials—A Review. Metals, 2021, 11, 730.	2.3	54
3	Medium-Frequency Electrical Resistance Sintering of Soft Magnetic Powder Metallurgy Iron Parts. Metals, 2021, 11, 994.	2.3	1
4	Evaluation of Wear Behaviour in Metallic Binders Employed in Diamond Tools for Cutting Stone. Materials, 2021, 14, 3988.	2.9	5
5	Modelling and Simulation of the Electrical Resistance Sintering Process of Iron Powders. Metals and Materials International, 2020, 26, 1045-1059.	3.4	7
6	Nickel Porous Compacts Obtained by Medium-Frequency Electrical Resistance Sintering. Materials, 2020, 13, 2131.	2.9	2
7	Influence of Temperature on Mechanical Properties of AMCs. Metals, 2020, 10, 783.	2.3	1
8	Influence of Processing Parameters on the Conduct of Electrical Resistance Sintering of Iron Powders. Metals, 2020, 10, 540.	2.3	3
9	Consolidation by MF-ERS of mechanically alloyed Al powder. Journal of Alloys and Compounds, 2019, 792, 529-535.	5.5	1
10	Crystallisation of amorphous Al-Y-Ni-(Cu) alloys. Journal of Non-Crystalline Solids, 2019, 512, 15-24.	3.1	7
11	Amorphous Al-Ti Powders Prepared by Mechanical Alloying and Consolidated by Electrical Resistance Sintering. Metals, 2019, 9, 1140.	2.3	11
12	On the Densification Kinetics of Metallic Powders Under Hot Uniaxial Pressing. Metals and Materials International, 2019, 25, 723-732.	3.4	0
13	Improvement of the balance between a reduced stress shielding and bone ingrowth by bioactive coatings onto porous titanium substrates. Surface and Coatings Technology, 2018, 338, 32-37.	4.8	39
14	Bioactive coatings on porous titanium for biomedical applications. Surface and Coatings Technology, 2018, 349, 584-592.	4.8	32
15	In Situ Synthesis of Al-Based MMCs Reinforced with AlN by Mechanical Alloying under NH3 Gas. Materials, 2018, 11, 823.	2.9	5
16	Medium-Frequency Electrical Resistance Sintering of Oxidized C.P. Iron Powder. Metals, 2018, 8, 426.	2.3	10
17	On the compressibility of metal powders. Powder Metallurgy, 2018, 61, 219-230.	1.7	9
18	Phenomenological equation for the thermal dependence of the activation energy of creep. Materials Letters, 2017, 196, 273-275.	2.6	1

F Ternero

#	Article	IF	CITATIONS
19	Synthesis and characterization of in situ-reinforced Al–AlN composites produced by mechanical alloying. Journal of Alloys and Compounds, 2017, 728, 640-644.	5.5	18
20	A Method to Determine the Electrical Resistance of a Metallic Powder Mass under Compression. Metals, 2017, 7, 479.	2.3	13
21	Influence of Milling Atmosphere on the Controlled Formation of Ultrafine Dispersoids in Al-Based MMCs. Metals, 2016, 6, 224.	2.3	5
22	Promotional Effect of the Base Metal on Bimetallic Au–Ni/CeO ₂ Catalysts Prepared from Core–Shell Nanoparticles. ACS Catalysis, 2013, 3, 2169-2180.	11.2	36
23	In Situ XAS Study of Synergic Effects on Ni–Co/ZrO ₂ Methane Reforming Catalysts. Journal of Physical Chemistry C, 2012, 116, 2919-2926.	3.1	126
24	Modifying the Size of Nickel Metallic Particles by H ₂ /CO Treatment in Ni/ZrO ₂ Methane Dry Reforming Catalysts. ACS Catalysis, 2011, 1, 82-88.	11.2	128
25	Effect of thermal treatments on the catalytic behaviour in the CO preferential oxidation of a CuO–CeO2–ZrO2 catalyst with a flower-like morphology. Applied Catalysis B: Environmental, 2011, 102, 627-637.	20.2	98
26	Study of nanostructured Ni/CeO2 catalysts prepared by combustion synthesis in dry reforming of methane. Applied Catalysis A: General, 2010, 384, 1-9.	4.3	112
27	Rigidity and/or Flexibility of Calixarenes. Effect of the p-Sulfonatocalix[n]arenes (n = 4, 6, and 8) on the Electron Transfer Process [Ru(NH3)5pz]2+ + Co(C2O4)33 Journal of Physical Chemistry B, 2007, 111, 10697-10702.	2.6	6
28	Amorphous Phase Formation and Heat Treating Evolution in Mechanically Alloyed Al-Ti Powders. Key Engineering Materials, 0, 772, 118-122.	0.4	3
29	Mechanical Crystallization of Amorphous Ti ₅₀ Al ₃₀ Ni ₂₀ Alloy Prepared by Mechanical Alloying. Materials Science Forum, 0, 1059, 3-8.	0.3	1
30	Nickel Porous Compacts Obtained by Electrical Discharge Consolidation. Materials Science Forum, 0, 1059, 9-14.	0.3	0