Rodrigo Mendes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7093482/publications.pdf

Version: 2024-02-01

41 papers

8,527 citations

28 h-index

212478

340414 39 g-index

42 all docs 42 docs citations

times ranked

42

8527 citing authors

#	Article	IF	CITATIONS
1	The use of indigenous bacterial community as inoculant for plant growth promotion in soybean cultivation. Archives of Agronomy and Soil Science, 2023, 69, 135-150.	1.3	12
2	The rhizosphere microbiome: functions, dynamics, and role in plant protection. Tropical Plant Pathology, 2021, 46, 13-25.	0.8	34
3	Defining the wheat microbiome: Towards microbiome-facilitated crop production. Computational and Structural Biotechnology Journal, 2021, 19, 1200-1213.	1.9	44
4	Rhizosphere Microbiome and Soil-Borne Diseases. Rhizosphere Biology, 2021, , 155-168.	0.4	4
5	The Role of Plant-Associated Bacteria, Fungi, and Viruses in Drought Stress Mitigation. Frontiers in Microbiology, 2021, 12, 743512.	1.5	57
6	Multitrophic interactions in the rhizosphere microbiome of wheat: from bacteria and fungi to protists. FEMS Microbiology Ecology, 2020, 96, .	1.3	77
7	Wheat dwarfing influences selection of the rhizosphere microbiome. Scientific Reports, 2020, 10, 1452.	1.6	62
8	Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia. Microbiome, 2019, 7, 114.	4.9	140
9	Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science, 2019, 366, 606-612.	6.0	621
10	Resistance Breeding of Common Bean Shapes the Physiology of the Rhizosphere Microbiome. Frontiers in Microbiology, 2019, 10, 2252.	1.5	41
11	Land Management and Microbial Seed Load Effect on Rhizosphere and Endosphere Bacterial Community Assembly in Wheat. Frontiers in Microbiology, 2019, 10, 2625.	1.5	18
12	The role of species turnover in structuring bacterial communities in a local scale in theÂcactus rhizosphere. Plant and Soil, 2018, 425, 101-112.	1.8	10
13	Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME Journal, 2018, 12, 212-224.	4.4	296
14	Inorganic Nitrogen Application Affects Both Taxonomical and Predicted Functional Structure of Wheat Rhizosphere Bacterial Communities. Frontiers in Microbiology, 2018, 9, 1074.	1.5	125
15	Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean. ISME Journal, 2018, 12, 3038-3042.	4.4	92
16	Ecological Aspects on Rumen Microbiome. , 2017, , 367-389.		1
17	Dominance of Epsilonproteobacteria associated with a whale fall at a 4204 m depth – South Atlantic Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 146, 53-58.	0.6	11
18	Plant Microbiome: Composition and Functions in Plant Compartments., 2017,, 7-20.		24

#	Article	IF	Citations
19	Linking rhizosphere microbiome composition of wild and domesticated <i>Phaseolus vulgaris</i> to genotypic and root phenotypic traits. ISME Journal, 2017, 11, 2244-2257.	4.4	298
20	Diversity of Cultivated Fungi Associated with Conventional and Transgenic Sugarcane and the Interaction between Endophytic Trichoderma virens and the Host Plant. PLoS ONE, 2016, 11, e0158974.	1.1	51
21	Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression. Ecology Letters, 2016, 19, 375-382.	3.0	143
22	Fungal invasion of the rhizosphere microbiome. ISME Journal, 2016, 10, 265-268.	4.4	294
23	Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Molecular Biology, 2016, 90, 635-644.	2.0	504
24	Genome mining and metabolic profiling of the rhizosphere bacterium Pseudomonas sp. SH-C52 for antimicrobial compounds. Frontiers in Microbiology, 2015, 6, 693.	1.5	91
25	Cross-Kingdom Similarities in Microbiome Ecology and Biocontrol of Pathogens. Frontiers in Microbiology, 2015, 6, 1311.	1.5	24
26	Cross-kingdom similarities in microbiome functions. ISME Journal, 2015, 9, 1905-1907.	4.4	85
27	Functional congruence of rhizosphere microbial communities associated to leguminous tree from <scp>B</scp> razilian semiarid region. Environmental Microbiology Reports, 2015, 7, 95-101.	1.0	20
28	Exploring the sheep rumen microbiome for carbohydrate-active enzymes. Antonie Van Leeuwenhoek, 2015, 108, 15-30.	0.7	55
29	Deciphering microbial landscapes of fish eggs to mitigate emerging diseases. ISME Journal, 2014, 8, 2002-2014.	4.4	64
30	The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 2013, 37, 634-663.	3.9	1,929
31	Whole-Genome Shotgun Sequencing of Rhodococcus erythropolis Strain P27, a Highly Radiation-Resistant Actinomycete from Antarctica. Genome Announcements, 2013, 1, .	0.8	6
32	Draft Genome Sequence of <i>Pseudomonas</i> sp. Strain CMAA 1215, a Plant Growth-Promoting Bacterium Isolated from a Brazilian Mangrove. Genome Announcements, 2013, 1, .	0.8	5
33	Water Regime Influences Bulk Soil and Rhizosphere of Cereus jamacaru Bacterial Communities in the Brazilian Caatinga Biome. PLoS ONE, 2013, 8, e73606.	1.1	90
34	Genetic and Phenotypic Diversity of <i>Sclerotium rolfsii</i> in Groundnut Fields in Central Vietnam. Plant Disease, 2012, 96, 389-397.	0.7	40
35	Deciphering the Rhizosphere Microbiome for Disease-Suppressive Bacteria. Science, 2011, 332, 1097-1100.	6.0	2,135
36	Bacterial community in the rhizosphere and rhizoplane of wild type and transgenic eucalyptus. World Journal of Microbiology and Biotechnology, 2009, 25, 1065-1073.	1.7	20

RODRIGO MENDES

#	Article	IF	CITATIONS
37	Genomics of pyrrolnitrin biosynthetic loci: evidence for conservation and wholeâ€operon mobility within Gramâ€negative bacteria. Environmental Microbiology, 2009, 11, 159-175.	1.8	50
38	Transgenic tobacco revealing altered bacterial diversity in the rhizosphere during early plant development. Antonie Van Leeuwenhoek, 2008, 93, 415-424.	0.7	53
39	Diversity of Cultivated Endophytic Bacteria from Sugarcane: Genetic and Biochemical Characterization of <i>Burkholderia cepacia</i> Complex Isolates. Applied and Environmental Microbiology, 2007, 73, 7259-7267.	1.4	190
40	Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide. Plant and Soil, 2005, 273, 91-99.	1.8	128
41	Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environmental Microbiology, 2004, 6, 1244-1251.	1.8	583