Jason Matthews

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7092743/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Estrogen Receptors: How Do They Signal and What Are Their Targets. Physiological Reviews, 2007, 87, 905-931.	13.1	1,489
2	Estrogen Signaling: A Subtle Balance Between ERÂ and ERÂ. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2003, 3, 281-292.	3.4	726
3	In Vitro and in Vivo Interactions of Bisphenol A and Its Metabolite, Bisphenol A Glucuronide, with Estrogen Receptors \hat{I}_{\pm} and \hat{I}^2 . Chemical Research in Toxicology, 2001, 14, 149-157.	1.7	410
4	Differential estrogen receptor binding of estrogenic substances: a species comparison. Journal of Steroid Biochemistry and Molecular Biology, 2000, 74, 223-234.	1.2	271
5	Estrogen receptor and aryl hydrocarbon receptor signaling pathways. Nuclear Receptor Signaling, 2006, 4, nrs.04016.	1.0	214
6	Aryl Hydrocarbon Receptor-Mediated Transcription: Ligand-Dependent Recruitment of Estrogen Receptor α to 2,3,7,8-Tetrachlorodibenzo- p-Dioxin-Responsive Promoters. Molecular and Cellular Biology, 2005, 25, 5317-5328.	1.1	189
7	Constitutive aryl hydrocarbon receptor signaling constrains type I interferon–mediated antiviral innate defense. Nature Immunology, 2016, 17, 687-694.	7.0	182
8	Estrogen Receptor (ER) β Modulates ERα-Mediated Transcriptional Activation by Altering the Recruitment of c-Fos and c-Jun to Estrogen-Responsive Promoters. Molecular Endocrinology, 2006, 20, 534-543.	3.7	168
9	ADPâ€ribosyltransferases, an update on function and nomenclature. FEBS Journal, 2022, 289, 7399-7410.	2.2	150
10	Estrogen Receptor β2 Negatively Regulates the Transactivation of Estrogen Receptor α in Human Breast Cancer Cells. Cancer Research, 2007, 67, 3955-3962.	0.4	133
11	The basic helix-loop-helix-PAS protein ARNT functions as a potent coactivator of estrogen receptor-dependent transcription. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6517-6522.	3.3	130
12	2,3,7,8-Tetrachlorodibenzo-p-dioxin poly(ADP-ribose) polymerase (TiPARP, ARTD14) is a mono-ADP-ribosyltransferase and repressor of aryl hydrocarbon receptor transactivation. Nucleic Acids Research, 2013, 41, 1604-1621.	6.5	121
13	Interaction of PAH-related compounds with the $\hat{I}\pm$ and \hat{I}^2 isoforms of the estrogen receptor. Toxicology Letters, 2001, 121, 167-177.	0.4	112
14	Integration of Genome-Wide Computation DRE Search, AhR ChIP-chip and Gene Expression Analyses of TCDD-Elicited Responses in the Mouse Liver. BMC Genomics, 2011, 12, 365.	1.2	112
15	High-Resolution Genome-wide Mapping of AHR and ARNT Binding Sites by ChIP-Seq. Toxicological Sciences, 2012, 130, 349-361.	1.4	111
16	Quantification of rainbow trout (Oncorhynchus mykiss) zona radiata and vitellogenin mRNA levels using real-time PCR after in vivo treatment with estradiol-17β or α-zearalenol. Journal of Steroid Biochemistry and Molecular Biology, 2000, 75, 109-119.	1.2	98
17	Hydroxylated Benzo[a]pyrene Metabolites Are Responsible for in Vitro Estrogen Receptor-Mediated Gene Expression Induced by Benzo[a]pyrene, but Do Not Elicit Uterotrophic Effects in Vivo. Toxicological Sciences, 2001, 59, 231-240.	1.4	78
18	Dioxin Increases the Interaction Between Aryl Hydrocarbon Receptor and Estrogen Receptor Alpha at Human Promoters. Toxicological Sciences, 2009, 111, 254-266.	1.4	73

#	Article	IF	CITATIONS
19	Distribution of Androgen Receptor mRNA Expression and Immunoreactivity in the Brain of the Green Anole Lizard. Journal of Neuroendocrinology, 2002, 14, 19-28.	1.2	67
20	Inhibition of aryl hydrocarbon receptor-dependent transcription by resveratrol or kaempferol is independent of estrogen receptor I± expression in human breast cancer cells. Cancer Letters, 2010, 299, 119-129.	3.2	58
21	Dose-Dependent Metabolic Reprogramming and Differential Gene Expression in TCDD-Elicited Hepatic Fibrosis. Toxicological Sciences, 2016, 154, 253-266.	1.4	54
22	EID3 is a novel EID family member and an inhibitor of CBP-dependent co-activation. Nucleic Acids Research, 2005, 33, 3561-3569.	6.5	53
23	Aryl Hydrocarbon Receptor Repressor and TiPARP (ARTD14) Use Similar, but also Distinct Mechanisms to Repress Aryl Hydrocarbon Receptor Signaling. International Journal of Molecular Sciences, 2014, 15, 7939-7957.	1.8	52
24	Loss of the Mono-ADP-ribosyltransferase, Tiparp, Increases Sensitivity to Dioxin-induced Steatohepatitis and Lethality. Journal of Biological Chemistry, 2015, 290, 16824-16840.	1.6	51
25	Aryl hydrocarbon receptor (AhR)-dependent regulation of pulmonary miRNA by chronic cigarette smoke exposure. Scientific Reports, 2017, 7, 40539.	1.6	47
26	Aryl Hydrocarbon Receptor-Dependent Induction of Flavin-Containing Monooxygenase mRNAs in Mouse Liver. Drug Metabolism and Disposition, 2008, 36, 2499-2505.	1.7	45
27	Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity. Journal of Lipid Research, 2015, 56, 771-785.	2.0	45
28	Co-planar 3,3′,4,4′,5-pentachlorinated biphenyl and non-co-planar 2,2′,4,6,6′-pentachlorinated bipher differentially induce recruitment of oestrogen receptor α to aryl hydrocarbon receptor target genes. Biochemical Journal, 2007, 406, 343-353.	ıyl 1.7	44
29	Estrogen Receptor Subtype– and Promoter-Specific Modulation of Aryl Hydrocarbon Receptor–Dependent Transcription. Molecular Cancer Research, 2009, 7, 977-986.	1.5	44
30	Chemical genetics and proteome-wide site mapping reveal cysteine MARylation by PARP-7 on immune-relevant protein targets. ELife, 2021, 10, .	2.8	43
31	Deoxyribonucleic Acid Response Element-Dependent Regulation of Transcription by Orphan Nuclear Receptor Estrogen Receptor-Related Receptor γ. Molecular Endocrinology, 2004, 18, 312-325.	3.7	42
32	The aryl hydrocarbon receptor suppresses cigarette-smoke-induced oxidative stress in association with dioxin response element (DRE)-independent regulation of sulfiredoxin 1. Free Radical Biology and Medicine, 2015, 89, 342-357.	1.3	41
33	Convergence of hepcidin deficiency, systemic iron overloading, heme accumulation, and REV-ERBα/β activation in aryl hydrocarbon receptor-elicited hepatotoxicity. Toxicology and Applied Pharmacology, 2017, 321, 1-17.	1.3	41
34	TCDD-inducible poly-ADP-ribose polymerase (TIPARP/PARP7) mono-ADP-ribosylates and co-activates liver X receptors. Biochemical Journal, 2016, 473, 899-910.	1.7	40
35	Characterization of TCDD-inducible poly-ADP-ribose polymerase (TIPARP/ARTD14) catalytic activity. Biochemical Journal, 2018, 475, 3827-3846.	1.7	40
36	Genome-wide mapping and analysis of aryl hydrocarbon receptor (AHR)- and aryl hydrocarbon receptor repressor (AHRR)-binding sites in human breast cancer cells. Archives of Toxicology, 2018, 92, 225-240.	1.9	39

#	Article	IF	CITATIONS
37	DNA methylation repels binding of hypoxia-inducible transcription factors to maintain tumor immunotolerance. Genome Biology, 2020, 21, 182.	3.8	39
38	Pyruvate Kinase Isoform Switching and Hepatic Metabolic Reprogramming by the Environmental Contaminant 2,3,7,8-Tetrachlorodibenzo- <i>p</i> Dioxin. Toxicological Sciences, 2016, 149, 358-371.	1.4	38
39	The aryl hydrocarbon receptor and estrogen receptor alpha differentially modulate nuclear factor erythroid-2-related factor 2 transactivation in MCF-7 breast cancer cells. Toxicology and Applied Pharmacology, 2013, 270, 139-148.	1.3	37
40	Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation. Toxicology and Applied Pharmacology, 2014, 280, 511-525.	1.3	37
41	Estrogen receptor-dependent regulation of CYP2B6 in human breast cancer cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 469-479.	0.9	35
42	In Silico Approaches to Mechanistic and Predictive Toxicology: An Introduction to Bioinformatics for Toxicologists. Critical Reviews in Toxicology, 2002, 32, 67-112.	1.9	34
43	Ability of structurally diverse natural products and synthetic chemicals to induce gene expression mediated by estrogen receptors from various species. Journal of Steroid Biochemistry and Molecular Biology, 2002, 82, 181-194.	1.2	34
44	Estrogen receptor-α regulates SOCS-3 expression in human breast cancer cells. Biochemical and Biophysical Research Communications, 2005, 335, 168-174.	1.0	34
45	Flavin-containing monooxygenase-3: Induction by 3-methylcholanthrene and complex regulation by xenobiotic chemicals in hepatoma cells and mouse liver. Toxicology and Applied Pharmacology, 2010, 247, 60-69.	1.3	34
46	Aryl Hydrocarbon Receptor-Dependent Metabolism Plays a Significant Role in Estrogen-Like Effects of Polycyclic Aromatic Hydrocarbons on Cell Proliferation. Toxicological Sciences, 2018, 165, 447-461.	1.4	33
47	3-Methylcholanthrene Induces Differential Recruitment of Aryl Hydrocarbon Receptor to Human Promoters. Toxicological Sciences, 2010, 117, 90-100.	1.4	31
48	FOXA1 Is Essential for Aryl Hydrocarbon Receptor–Dependent Regulation of Cyclin G2. Molecular Cancer Research, 2012, 10, 636-648.	1.5	28
49	Effects of antioxidant-rich foods on altitude-induced oxidative stress and inflammation in elite endurance athletes: A randomized controlled trial. PLoS ONE, 2019, 14, e0217895.	1.1	28
50	The Ah receptor inhibits estrogen-induced estrogen receptor Î ² in breast cancer cells. Biochemical and Biophysical Research Communications, 2004, 320, 76-82.	1.0	25
51	Functional analysis of six human aryl hydrocarbon receptor variants in human breast cancer and mouse hepatoma cell lines. Toxicology, 2010, 277, 59-65.	2.0	25
52	PARP7 and Mono-ADP-Ribosylation Negatively Regulate Estrogen Receptor α Signaling in Human Breast Cancer Cells. Cells, 2021, 10, 623.	1.8	24
53	Induction of Multidrug Resistance Transporter ABCG2 by Prolactin in Human Breast Cancer Cells. Molecular Pharmacology, 2013, 83, 377-388.	1.0	22
54	Identification of aryl hydrocarbon receptor binding targets in mouse hepatic tissue treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology and Applied Pharmacology, 2011, 257, 38-47.	1.3	21

4

#	Article	IF	CITATIONS
55	Zinc Finger Nuclease–Mediated Knockout of AHR or ARNT in Human Breast Cancer Cells Abolishes Basal and Ligand-Dependent Regulation of CYP1B1 and Differentially Affects Estrogen Receptor α Transactivation. Toxicological Sciences, 2014, 138, 89-103.	1.4	21
56	The aryl hydrocarbon receptor regulates the expression of TIPARP and its cis long non-coding RNA, TIPARP-AS1. Biochemical and Biophysical Research Communications, 2018, 495, 2356-2362.	1.0	20
57	Hepatocyte-Specific Deletion of TIPARP, a Negative Regulator of the Aryl Hydrocarbon Receptor, Is Sufficient to Increase Sensitivity to Dioxin-Induced Wasting Syndrome. Toxicological Sciences, 2018, 165, 347-360.	1.4	20
58	Reciprocal mutagenesis between human α(L349, M528) and rainbow trout (M317, I496) estrogen receptor residues demonstrates their importance in ligand binding and gene expression at different temperatures. Molecular and Cellular Endocrinology, 2001, 183, 127-139.	1.6	18
59	A New Class of Estrogen Receptor Beta-Selective Activators. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2010, 10, 133-136.	3.4	18
60	AHR toxicity and signaling: Role of TIPARP and ADP-ribosylation. Current Opinion in Toxicology, 2017, 2, 50-57.	2.6	17
61	LXRα Regulates Hepatic ChREBPα Activity and Lipogenesis upon Glucose, but Not Fructose Feeding in Mice. Nutrients, 2017, 9, 678.	1.7	16
62	Environmental six-ring polycyclic aromatic hydrocarbons are potent inducers of the AhR-dependent signaling in human cells. Environmental Pollution, 2020, 266, 115125.	3.7	15
63	2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) alters hepatic polyunsaturated fatty acid metabolism and eicosanoid biosynthesis in female Sprague-Dawley rats. Toxicology and Applied Pharmacology, 2020, 398, 115034.	1.3	13
64	Low levels of the AhR in chronic obstructive pulmonary disease (COPD)-derived lung cells increases COX-2 protein by altering mRNA stability. PLoS ONE, 2017, 12, e0180881.	1.1	13
65	Activation function 2 mediates dioxin-induced recruitment of estrogen receptor alpha to CYP1A1 and CYP1B1. Biochemical and Biophysical Research Communications, 2009, 385, 263-268.	1.0	12
66	Differential ligand-dependent activation and a role for Y322 in aryl hydrocarbon receptor-mediated regulation of gene expression. Biochemical and Biophysical Research Communications, 2011, 410, 859-865.	1.0	11
67	The aryl hydrocarbon receptor reduces LC3II expression and controls endoplasmic reticulum stress. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L339-L355.	1.3	11
68	Molecular modelling, synthesis, and biological evaluations of a 3,5-disubstituted isoxazole fatty acid analogue as a PPARI±-selective agonist. Bioorganic and Medicinal Chemistry, 2019, 27, 4059-4068.	1.4	9
69	Loss of Tiparp Results in Aberrant Layering of the Cerebral Cortex. ENeuro, 2019, 6, ENEURO.0239-19.2019.	0.9	9
70	Characterization of Epigenetic Histone Activation/Repression Marks in Sequences of Genes by Chromatin Immunoprecipitation-Quantitative Polymerase Chain Reaction (ChIP-qPCR). Methods in Molecular Biology, 2019, 1965, 389-403.	0.4	8
71	2,3,7,8-Tetrachlorodibenzo- <i>p</i> -Dioxin (TCDD)-Inducible Poly-ADP-Ribose Polymerase (TIPARP/PARP7) Catalytic Mutant Mice (<i>TiparpH532A</i>) Exhibit Increased Sensitivity to TCDD-Induced Hepatotoxicity and Lethality. Toxicological Sciences, 2021, 183, 154-169.	1.4	8
72	3-Methylcholanthrene Induces Chylous Ascites in TCDD-Inducible Poly-ADP-Ribose Polymerase (Tiparp) Knockout Mice. International Journal of Molecular Sciences, 2019, 20, 2312.	1.8	7

#	Article	IF	CITATIONS
73	Aryl Hydrocarbon Receptor (AhR) Limits the Inflammatory Responses in Human Lung Adenocarcinoma A549 Cells via Interference with NF-κB Signaling. Cells, 2022, 11, 707.	1.8	7
74	Analysis of the effects of aryl hydrocarbon receptor expression on cancer cell invasion via three-dimensional microfluidic invasion assays. Lab on A Chip, 2022, 22, 313-325.	3.1	6
75	LongITools: Dynamic longitudinal exposome trajectories in cardiovascular and metabolic noncommunicable diseases. Environmental Epidemiology, 2022, 6, e184.	1.4	6
76	Methods to Study TCDD-Inducible Poly-ADP-Ribose Polymerase (TIPARP) Mono-ADP-Ribosyltransferase Activity. Methods in Molecular Biology, 2018, 1813, 109-124.	0.4	5
77	The human RAP250 gene: genomic structure and promoter analysis. Gene, 2004, 327, 233-238.	1.0	4
78	Reduced Colonic Mucosal Injury in 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Poly ADP-Ribose Polymerase (TIPARP/PARP7)-Deficient Mice. International Journal of Molecular Sciences, 2022, 23, 920.	1.8	4
79	Alternative Negative Feedback Control in the Aryl Hydrocarbon Receptor Signaling Pathway. Journal of Drug Metabolism & Toxicology, 2013, 04, .	0.1	3
80	AHR- and ER-Mediated Toxicology and Chemoprevention. Advances in Molecular Toxicology, 2013, , 1-38.	0.4	3
81	LXRα Regulates ChREBPα Transactivity in a Target Gene-Specific Manner through an Agonist-Modulated LBD-LID Interaction. Cells, 2020, 9, 1214.	1.8	2
82	Shared epitope is associated with the reactivity of Th17 cells to cigarette smoke extract regardless of smoking history. Cellular and Molecular Immunology, 2019, 16, 674-675.	4.8	1
83	Aminoflavone upregulates putative tumor suppressor miR-125b-2-3p to inhibit luminal A breast cancer stem cell-like properties. Precision Clinical Medicine, 0, , .	1.3	1