Cristobal Uauy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7091952/publications.pdf Version: 2024-02-01

CDISTORAL HALIV

#	Article	IF	CITATIONS
1	Pathogenomic analyses of <i>Puccinia striiformis</i> f. sp. <i>tritici</i> supports a close genetic relationship between South and EastÂAfrica. Plant Pathology, 2022, 71, 279-288.	1.2	5
2	Distribution of <i>Puccinia striiformis</i> f. sp. <i>tritici</i> Races and Virulence in Wheat Growing Regions of Kenya from 1970 to 2014. Plant Disease, 2022, 106, 701-710.	0.7	3
3	Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nature Biotechnology, 2022, 40, 422-431.	9.4	102
4	Characterization of wheat lacking B-type starch granules. Journal of Cereal Science, 2022, 104, 103398.	1.8	8
5	High expression of the MADS-box gene <i>VRT2</i> increases the number of rudimentary basal spikelets in wheat. Plant Physiology, 2022, 189, 1536-1552.	2.3	17
6	Trend, population structure, and trait mapping from 15 years of national varietal trials of UK winter wheat. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	5
7	Pathogen-induced biosynthetic pathways encode defense-related molecules in bread wheat. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2123299119.	3.3	30
8	MicroRNA-resistant alleles of <i>HOMEOBOX DOMAIN-2</i> modify inflorescence branching and increase grain protein content of wheat. Science Advances, 2022, 8, eabn5907.	4.7	19
9	The Triticum ispahanicum elongated glume locus P2 maps to chromosome 6A and is associated with the ectopic expression of SVP-A1. Theoretical and Applied Genetics, 2022, , .	1.8	4
10	FANCM promotes class I interfering crossovers and suppresses class II non-interfering crossovers in wheat meiosis. Nature Communications, 2022, 13, .	5.8	21
11	New insights into homoeologous copy number variations in the hexaploid wheat genome. Plant Genome, 2021, 14, e20069.	1.6	16
12	Identification of Fusarium head blight resistance loci in two Brazilian wheat mapping populations. PLoS ONE, 2021, 16, e0248184.	1.1	7
13	Evaluation of the susceptibility of modern, wild, ancestral, and mutational wheat lines to Septoria tritici blotch disease. Plant Pathology, 2021, 70, 1123-1137.	1.2	2
14	Wheat root systems as a breeding target for climate resilience. Theoretical and Applied Genetics, 2021, 134, 1645-1662.	1.8	74
15	The membrane-localized protein kinase MAP4K4/TOT3 regulates thermomorphogenesis. Nature Communications, 2021, 12, 2842.	5.8	30
16	Genome-wide association mapping identifies yellow rust resistance loci in Ethiopian durum wheat germplasm. PLoS ONE, 2021, 16, e0243675.	1.1	12
17	Ectopic expression of <i>Triticum polonicum VRT-A2</i> underlies elongated glumes and grains in hexaploid wheat in a dosage-dependent manner. Plant Cell, 2021, 33, 2296-2319.	3.1	36
18	A robust KASP marker for selection of four pairs of linked leaf rust and stripe rust resistance genes introgressed on chromosome arm 5DS from different wheat genomes. Molecular Biology Reports, 2021, 48, 5209-5216.	1.0	2

#	Article	IF	CITATIONS
19	<i>ENHANCED GRAVITROPISM 2</i> encodes a STERILE ALPHA MOTIF–containing protein that controls root growth angle in barley and wheat. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	32
20	Crossover-active regions of the wheat genome are distinguished by DMC1, the chromosome axis, H3K27me3, and signatures of adaptation. Genome Research, 2021, 31, 1614-1628.	2.4	18
21	Wheat in vivo RNA structure landscape reveals a prevalent role of RNA structure in modulating translational subgenome expression asymmetry. Genome Biology, 2021, 22, 326.	3.8	12
22	Aegilops umbellulata introgression carrying leaf rust and stripe rust resistance genes Lr76 and Yr70 located to 9.47-Mb region on 5DS telomeric end through a combination of chromosome sorting and sequencing. Theoretical and Applied Genetics, 2020, 133, 903-915.	1.8	26
23	Yield reduction historically associated with the Aegilops ventricosa 7DV introgression is genetically and physically distinct from the eyespot resistance gene Pch1. Theoretical and Applied Genetics, 2020, 133, 707-717.	1.8	4
24	Insights into the resistance of a synthetically-derived wheat to Septoria tritici blotch disease: less is more. BMC Plant Biology, 2020, 20, 407.	1.6	6
25	A heat-shock inducible system for flexible gene expression in cereals. Plant Methods, 2020, 16, 137.	1.9	5
26	A carbohydrate-binding protein, B-GRANULE CONTENT 1, influences starch granule size distribution in a dose-dependent manner in polyploid wheat. Journal of Experimental Botany, 2020, 71, 105-115.	2.4	36
27	Allelic diversity study of functional genes in East Africa bread wheat highlights opportunities for genetic improvement. Molecular Breeding, 2020, 40, 1.	1.0	4
28	Multiple wheat genomes reveal global variation in modern breeding. Nature, 2020, 588, 277-283.	13.7	513
29	A haplotype-led approach to increase the precision of wheat breeding. Communications Biology, 2020, 3, 712.	2.0	68
30	Comparative Genomics and Functional Studies of Wheat BED-NLR Loci. Genes, 2020, 11, 1406.	1.0	7
31	The Wheat GENIE3 Network Provides Biologically-Relevant Information in Polyploid Wheat. G3: Genes, Genomes, Genetics, 2020, 10, 3675-3686.	0.8	21
32	Copy number variation of <i>TdDof</i> controls solid-stemmed architecture in wheat. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28708-28718.	3.3	33
33	Dissecting the genetic basis of wheat blast resistance in the Brazilian wheat cultivar BR 18-Terena. BMC Plant Biology, 2020, 20, 398.	1.6	30
34	Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints. Nature Communications, 2020, 11, 4572.	5.8	129
35	Strategies to improve wheat for human health. Nature Food, 2020, 1, 475-480.	6.2	54
36	Genetic Characterization of a Wheat Association Mapping Panel Relevant to Brazilian Breeding Using a High-Density Single Nucleotide Polymorphism Array. G3: Genes, Genomes, Genetics, 2020, 10, 2229-2239.	0.8	12

#	Article	IF	CITATIONS
37	Discovery and characterisation of a new leaf rust resistance gene introgressed in wheat from wild wheat Aegilops peregrina. Scientific Reports, 2020, 10, 7573.	1.6	13
38	The NLR-Annotator Tool Enables Annotation of the Intracellular Immune Receptor Repertoire. Plant Physiology, 2020, 183, 468-482.	2.3	147
39	Enabling reusability of plant phenomic datasets with MIAPPE 1.1. New Phytologist, 2020, 227, 260-273.	3.5	84
40	Agricultural Selection of Wheat Has Been Shaped by Plant-Microbe Interactions. Frontiers in Microbiology, 2020, 11, 132.	1.5	53
41	Exome sequencing of bulked segregants identified a novel TaMKK3-A allele linked to the wheat ERA8 ABA-hypersensitive germination phenotype. Theoretical and Applied Genetics, 2020, 133, 719-736.	1.8	17
42	LYS3 encodes a prolamin-box-binding transcription factor that controls embryo growth in barley and wheat. Journal of Cereal Science, 2020, 93, 102965.	1.8	14
43	A roadmap for gene functional characterisation in crops with large genomes: Lessons from polyploid wheat. ELife, 2020, 9, .	2.8	78
44	Applying the latest advances in genomics and phenomics for trait discovery in polyploid wheat. Plant Journal, 2019, 97, 56-72.	2.8	83
45	Genetic Screening for Mutants with Altered Seminal Root Numbers in Hexaploid Wheat Using a High-Throughput Root Phenotyping Platform. G3: Genes, Genomes, Genetics, 2019, 9, 2799-2809.	0.8	17
46	Development of mlo-based resistance in tetraploid wheat against wheat powdery mildew. Theoretical and Applied Genetics, 2019, 132, 3009-3022.	1.8	16
47	Identification of a Dominant Chlorosis Phenotype Through a Forward Screen of the Triticum turgidum cv. Kronos TILLING Population. Frontiers in Plant Science, 2019, 10, 963.	1.7	18
48	A Co-Expression Network in Hexaploid Wheat Reveals Mostly Balanced Expression and Lack of Significant Gene Loss of Homeologous Meiotic Genes Upon Polyploidization. Frontiers in Plant Science, 2019, 10, 1325.	1.7	24
49	Conserved residues in the wheat (Triticum aestivum) NAM-A1 NAC domain are required for protein binding and when mutated lead to delayed peduncle and flag leaf senescence. BMC Plant Biology, 2019, 19, 407.	1.6	19
50	Fine mapping of Aegilops peregrina co-segregating leaf and stripe rust resistance genes to distal-most end of 5DS. Theoretical and Applied Genetics, 2019, 132, 1473-1485.	1.8	8
51	Global transcriptome analysis uncovers the gene co-expression regulation network and key genes involved in grain development of wheat (Triticum aestivum L.). Functional and Integrative Genomics, 2019, 19, 853-866.	1.4	14
52	Identification of Transcription Factors Regulating Senescence in Wheat through Gene Regulatory Network Modelling. Plant Physiology, 2019, 180, 1740-1755.	2.3	73
53	Improving wheat as a source of iron and zinc for global nutrition. Nutrition Bulletin, 2019, 44, 53-59.	0.8	69
54	Genome-Wide Association Mapping of Grain Micronutrients Concentration in Aegilops tauschii. Frontiers in Plant Science, 2019, 10, 54.	1.7	45

#	Article	IF	CITATIONS
55	A reductionist approach to dissecting grain weight and yield in wheat. Journal of Integrative Plant Biology, 2019, 61, 337-358.	4.1	122
56	Hotspots in the genomic architecture of field drought responses in wheat as breeding targets. Functional and Integrative Genomics, 2019, 19, 295-309.	1.4	40
57	Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici. Nature Genetics, 2018, 50, 368-374.	9.4	215
58	Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants, 2018, 4, 23-29.	4.7	770
59	<i>Rht18</i> Semidwarfism in Wheat Is Due to Increased <i>GA 2-oxidaseA9</i> Expression and Reduced GA Content. Plant Physiology, 2018, 177, 168-180.	2.3	128
60	Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nature Protocols, 2018, 13, 2944-2963.	5.5	286
61	Genome-Wide Transcription During Early Wheat Meiosis Is Independent of Synapsis, Ploidy Level, and the Ph1 Locus. Frontiers in Plant Science, 2018, 9, 1791.	1.7	44
62	Heat in Wheat: Exploit Reverse Genetic Techniques to Discover New Alleles Within the Triticum durum sHsp26 Family. Frontiers in Plant Science, 2018, 9, 1337.	1.7	38
63	Final grain weight is not limited by the activity of key starch-synthesising enzymes during grain filling in wheat. Journal of Experimental Botany, 2018, 69, 5461-5475.	2.4	38
64	Ubiquitin-related genes are differentially expressed in isogenic lines contrasting for pericarp cell size and grain weight in hexaploid wheat. BMC Plant Biology, 2018, 18, 22.	1.6	29
65	Barley lys3 mutants are unique amongst shrunken-endosperm mutants in having abnormally large embryos. Journal of Cereal Science, 2018, 82, 16-24.	1.8	18
66	Gene editing and mutagenesis reveal inter-cultivar differences and additivity in the contribution of TaGW2Âhomoeologues to grain size and weight in wheat. Theoretical and Applied Genetics, 2018, 131, 2463-2475.	1.8	142
67	BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nature Plants, 2018, 4, 662-668.	4.7	194
68	The transcriptional landscape of polyploid wheat. Science, 2018, 361, .	6.0	768
69	Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361, .	6.0	2,424
70	Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biology, 2018, 19, 103.	3.8	226
71	Uncovering hidden variation in polyploid wheat. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E913-E921.	3.3	554
72	An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Research, 2017, 27, 885-896.	2.4	464

#	Article	IF	CITATIONS
73	Increased pericarp cell length underlies a major quantitative trait locus for grain weight in hexaploid wheat. New Phytologist, 2017, 215, 1026-1038.	3.5	103
74	Wheat genomics comes of age. Current Opinion in Plant Biology, 2017, 36, 142-148.	3.5	103
75	Genomic innovation for crop improvement. Nature, 2017, 543, 346-354.	13.7	301
76	Genome sequence and genetic diversity of European ash trees. Nature, 2017, 541, 212-216.	13.7	166
77	Plant Genomics: Unlocking the Genome of Wheat's Progenitor. Current Biology, 2017, 27, R1122-R1124.	1.8	6
78	Combining Traditional Mutagenesis with New High-Throughput Sequencing and Genome Editing to Reveal Hidden Variation in Polyploid Wheat. Annual Review of Genetics, 2017, 51, 435-454.	3.2	100
79	Exploiting the ZIP4 homologue within the wheat Ph1 locus has identified two lines exhibiting homoeologous crossover in wheat-wild relative hybrids. Molecular Breeding, 2017, 37, 95.	1.0	126
80	Genome-Wide Sequence and Expression Analysis of the NAC Transcription Factor Family in Polyploid Wheat. G3: Genes, Genomes, Genetics, 2017, 7, 3019-3029.	0.8	59
81	Wheat Vacuolar Iron Transporter TaVIT2 Transports Fe and Mn and Is Effective for Biofortification. Plant Physiology, 2017, 174, 2434-2444.	2.3	206
82	The eyespot resistance genes Pch1 and Pch2 of wheat are not homoeoloci. Theoretical and Applied Genetics, 2017, 130, 91-107.	1.8	15
83	Transfer of a starch phenotype from wild wheat to bread wheat by deletion of a locus controlling B-type starch granule content. Journal of Experimental Botany, 2017, 68, 5497-5509.	2.4	22
84	Genome-Wide Association Study of Grain Architecture in Wild Wheat Aegilops tauschii. Frontiers in Plant Science, 2017, 8, 886.	1.7	114
85	Haplotype Analysis of the Pre-harvest Sprouting Resistance Locus Phs-A1 Reveals a Causal Role of TaMKK3-A in Global Germplasm. Frontiers in Plant Science, 2017, 8, 1555.	1.7	50
86	Systematic Investigation of FLOWERING LOCUS T-Like Poaceae Gene Families Identifies the Short-Day Expressed Flowering Pathway Gene, TaFT3 in Wheat (Triticum aestivum L.). Frontiers in Plant Science, 2016, 7, 857.	1.7	37
87	A Metabolic Gene Cluster in the Wheat <i>W1</i> and the Barley <i>Cer-cqu</i> Loci Determines β-Diketone Biosynthesis and Glaucousness. Plant Cell, 2016, 28, 1440-1460.	3.1	123
88	The host-pathogen interaction between wheat and yellow rust induces temporally coordinated waves of gene expression. BMC Genomics, 2016, 17, 380.	1.2	105
89	Identification and mapping of resistance to stem rust in the European winter wheat cultivars Spark and Rialto. Molecular Breeding, 2016, 36, 1.	1.0	2
90	A saturated SNP linkage map for the orange wheat blossom midge resistance gene Sm1. Theoretical and Applied Genetics, 2016, 129, 1507-1517.	1.8	15

#	Article	IF	CITATIONS
91	The <i>Cer-cqu</i> gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes. Journal of Experimental Botany, 2016, 67, 2715-2730.	2.4	81
92	The wheatPhs-A1pre-harvest sprouting resistance locus delays the rate of seed dormancy loss and maps 0.3 cM distal to thePM19genes in UK germplasm. Journal of Experimental Botany, 2016, 67, 4169-4178.	2.4	53
93	A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains. Theoretical and Applied Genetics, 2016, 129, 1099-1112.	1.8	179
94	expVIP: a Customizable RNA-seq Data Analysis and Visualization Platform. Plant Physiology, 2016, 170, 2172-2186.	2.3	403
95	Genomics as the key to unlocking the polyploid potential of wheat. New Phytologist, 2015, 208, 1008-1022.	3.5	151
96	The Genetic Basis of Composite Spike Form in Barley and â€~Miracle-Wheat'. Genetics, 2015, 201, 155-165.	1.2	109
97	Mutation Scanning in Wheat by Exon Capture and Next-Generation Sequencing. PLoS ONE, 2015, 10, e0137549.	1.1	65
98	Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biology, 2015, 16, 258.	3.8	490
99	PolyMarker: A fast polyploid primer design pipeline. Bioinformatics, 2015, 31, 2038-2039.	1.8	202
100	Wheat Stripe Rust Resistance Protein WKS1 Reduces the Ability of the Thylakoid-Associated Ascorbate Peroxidase to Detoxify Reactive Oxygen Species. Plant Cell, 2015, 27, 1755-1770.	3.1	133
101	Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biology, 2015, 16, 23.	3.8	185
102	<scp>RNA</scp> â€ <scp>S</scp> eq bulked segregant analysis enables the identification of highâ€resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnology Journal, 2015, 13, 613-624.	4.1	202
103	Wheat Grain Filling Is Limited by Grain Filling Capacity rather than the Duration of Flag Leaf Photosynthesis: A Case Study Using NAM RNAi Plants. PLoS ONE, 2015, 10, e0134947.	1.1	73
104	Next Generation Sequencing Enabled Genetics in Hexaploid Wheat. , 2015, , 201-209.		0
105	Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Frontiers in Plant Science, 2014, 5, 53.	1.7	171
106	A change in temperature modulates defence to yellow (stripe) rust in wheat line UC1041 independently of resistance gene Yr36. BMC Plant Biology, 2014, 14, 10.	1.6	41
107	Functional characterization of GPC-1 genes in hexaploid wheat. Planta, 2014, 239, 313-324.	1.6	85
108	Identification and independent validation of a stable yield and thousand grain weight QTL on chromosome 6A of hexaploid wheat (Triticum aestivum L). BMC Plant Biology, 2014, 14, 191.	1.6	161

#	Article	IF	CITATIONS
109	<i>Yr36</i> Confers Partial Resistance at Temperatures Below 18°C to U.K. Isolates of <i>Puccinia striiformis</i> . Phytopathology, 2014, 104, 871-878.	1.1	11
110	Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. triticireveal polymorphic and haustorial expressed secreted proteins as candidate effectors. BMC Genomics, 2013, 14, 270.	1.2	235
111	Strategy for exploiting exotic germplasm using genetic, morphological, and environmental diversity: the Aegilops tauschii Coss. example. Theoretical and Applied Genetics, 2013, 126, 1793-1808.	1.8	62
112	Genomics reveals new landscapes for crop improvement. Genome Biology, 2013, 14, 206.	3.8	99
113	Discovery and development of exomeâ€based, coâ€dominant single nucleotide polymorphism markers in hexaploid wheat (<i><scp>T</scp>riticum aestivum </i> <scp>L</scp> .). Plant Biotechnology Journal, 2013, 11, 279-295.	4.1	161
114	Application of TILLING for Orphan Crop Improvement. , 2013, , 83-113.		20
115	The <i><scp>I</scp>nhibitor of wax 1</i> locus (<i><scp>I</scp>w1</i>) prevents formation of β―and <scp>OH</scp> â€Î²â€diketones in wheat cuticular waxes and maps to a subâ€c <scp>M</scp> interval on chromosome arm 2 <scp>BS</scp> . Plant Journal, 2013, 74, 989-1002.	2.8	82
116	Separating homeologs by phasing in the tetraploid wheat transcriptome. Genome Biology, 2013, 14, R66.	3.8	126
117	Reduced height alleles (Rht) and Hagberg falling number of wheat. Journal of Cereal Science, 2012, 55, 305-311.	1.8	39
118	TILLING <i>in extremis</i> . Plant Biotechnology Journal, 2012, 10, 761-772.	4.1	109
119	Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat. BMC Plant Biology, 2012, 12, 14.	1.6	265
120	Divergent functions of orthologous NAC transcription factors in wheat and rice. Plant Molecular Biology, 2012, 78, 515-524.	2.0	70
121	Induced Mutations in the <i>Starch Branching Enzyme II</i> (<i>SBEII</i>) Genes Increase Amylose and Resistant Starch Content in Durum Wheat. Crop Science, 2012, 52, 1754-1766.	0.8	97
122	Effect of the down-regulation of the high Grain Protein Content (GPC) genes on the wheat transcriptome during monocarpic senescence. BMC Genomics, 2011, 12, 492.	1.2	75
123	Discovery of Rare Mutations in Populations: TILLING by Sequencing Â. Plant Physiology, 2011, 156, 1257-1268.	2.3	266
124	Identification of a major QTL controlling the content of B-type starch granules in Aegilops. Journal of Experimental Botany, 2011, 62, 2217-2228.	2.4	59
125	Down-regulation of four putative arabinoxylan feruloyl transferase genes from family PF02458 reduces ester-linked ferulate content in rice cell walls. Planta, 2010, 231, 677-691.	1.6	90
126	A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biology, 2009, 9, 115.	1.6	323

#	Article	IF	CITATIONS
127	Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. Journal of Experimental Botany, 2009, 60, 4263-4274.	2.4	300
128	A Kinase-START Gene Confers Temperature-Dependent Resistance to Wheat Stripe Rust. Science, 2009, 323, 1357-1360.	6.0	625
129	Colinearity between the barley grain protein content (GPC) QTL on chromosome arm 6HS and the wheat Gpc-B1 region. Molecular Breeding, 2008, 22, 25-38.	1.0	70
130	RNA interference for wheat functional gene analysis. Transgenic Research, 2007, 16, 689-701.	1.3	76
131	A NAC Gene Regulating Senescence Improves Grain Protein, Zinc, and Iron Content in Wheat. Science, 2006, 314, 1298-1301.	6.0	1,408
132	The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. Journal of Experimental Botany, 2006, 57, 2785-2794.	2.4	252
133	Physical map of the wheat highâ€grain protein content gene Gpcâ€B1 and development of a highâ€ŧhroughput molecular marker. New Phytologist, 2006, 169, 753-763.	3.5	150
134	High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theoretical and Applied Genetics, 2005, 112, 97-105.	1.8	208
135	Microcolinearity between a 2-cM region encompassing the grain protein content locus Gpc-6B1 on wheat chromosome 6B and a 350-kb region on rice chromosome 2. Functional and Integrative Genomics, 2004, 4, 59-66.	1.4	109