Ahmad M Itani

List of Publications by Citations

Source: https://exaly.com/author-pdf/7091686/ahmad-m-itani-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18 28 847 53 h-index g-index citations papers 2.6 949 4.31 55 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
53	Cyclic response of plate steels under large inelastic strains. <i>Journal of Constructional Steel Research</i> , 2007 , 63, 156-164	3.8	111
52	Cyclic Behavior of Shear Links of Various Grades of Plate Steel. <i>Journal of Structural Engineering</i> , 2010 , 136, 370-378	3	75
51	Pilot Study of Behavior of Concrete Beams Reinforced with Shape Memory Alloys. <i>Journal of Materials in Civil Engineering</i> , 2007 , 19, 454-461	3	72
50	Floor Accelerations in Yielding Special Moment Resisting Frame Structures. <i>Earthquake Spectra</i> , 2013 , 29, 987-1002	3.4	48
49	Seismic Performance of Steel Girder Bridges with Ductile Cross Frames Using Buckling-Restrained Braces. <i>Journal of Structural Engineering</i> , 2006 , 132, 338-345	3	39
48	Shake Table Studies and Analysis of a PT-UHPC Bridge Column with Pocket Connection. <i>Journal of Structural Engineering</i> , 2018 , 144, 04018021	3	34
47	Seismic-Resistant Special Truss-Moment Frames. <i>Journal of Structural Engineering</i> , 1994 , 120, 1781-179	973	33
46	Enhancing seismic resilience using truss girder frame systems with supplemental devices. <i>Journal of Constructional Steel Research</i> , 2014 , 94, 23-32	3.8	28
45	Seismic Performance of Steel Girder Bridges with Ductile Cross Frames Using Single Angle X Braces. Journal of Structural Engineering, 2006 , 132, 329-337	3	25
44	Seismic Performance and Response of Seismically Isolated Curved Steel I-Girder Bridge. <i>Journal of Structural Engineering</i> , 2016 , 142, 04016121	3	25
43	Damage avoidance design of special truss moment frames with energy dissipating devices. <i>Journal of Constructional Steel Research</i> , 2009 , 65, 1374-1384	3.8	24
42	Experimental and Analytical Studies of Hospital Piping Assemblies Subjected to Seismic Loading. <i>Earthquake Spectra</i> , 2012 , 28, 367-384	3.4	24
41	Seismic Behavior of Steel Girder Bridge Superstructures. <i>Journal of Bridge Engineering</i> , 2004 , 9, 243-24	9 2.7	23
40	Analytical Fragility Functions for Horizontally Curved Steel I-Girder Highway Bridges. <i>Earthquake Spectra</i> , 2015 , 31, 2235-2254	3.4	22
39	Seismic Behavior of Open-Web Truss-Moment Frames. <i>Journal of Structural Engineering</i> , 1994 , 120, 176	53 ₃ 178	0 21
38	Shake Table Studies and Analysis of a Precast Two-Column Bent with Advanced Materials and Pocket Connections. <i>Journal of Bridge Engineering</i> , 2018 , 23, 04018046	2.7	21
37	Performance of a large-scale magnetorheological elastomerBased vibration isolator for highway bridges. <i>Journal of Intelligent Material Systems and Structures</i> , 2018 , 29, 3890-3901	2.3	19

(2020-2015)

36	Analytical Modeling of Horizontally Curved Steel Girder Highway Bridges for Seismic Analysis. Journal of Earthquake Engineering, 2015 , 19, 220-248	1.8	18	
35	Impact of column-to-beam strength ratio on the seismic response of steel MRFs. <i>Bulletin of Earthquake Engineering</i> , 2015 , 13, 635-652	3.7	15	
34	Design, Construction, and Shake Table Testing of a Steel Girder Bridge System with ABC Connections. <i>Journal of Bridge Engineering</i> , 2019 , 24, 04019088	2.7	15	
33	Influence of earthquake ground motion incoherency on multi-support structures. <i>Earthquake Engineering and Engineering Vibration</i> , 2002 , 1, 167-180	2	15	
32	Response of a 2-story test-bed structure for the seismic evaluation of nonstructural systems. <i>Earthquake Engineering and Engineering Vibration</i> , 2016 , 15, 19-29	2	15	
31	Analytical Fragility Curves for a Class of Horizontally Curved Box-Girder Bridges. <i>Journal of Earthquake Engineering</i> , 2018 , 22, 881-901	1.8	13	
30	Experimental Studies on Seismic Response of Skew Bridges with Seat-Type Abutments. II: Results. Journal of Bridge Engineering, 2019 , 24, 04019097	2.7	12	
29	Finite element investigation of steel built-up shear links subjected to inelastic deformations. <i>Earthquake Engineering and Engineering Vibration</i> , 2004 , 3, 195-203	2	12	
28	Experimental Studies on Seismic Response of Skew Bridges with Seat-Type Abutments. I: Shake Table Experiments. <i>Journal of Bridge Engineering</i> , 2019 , 24, 04019096	2.7	10	
27	Seismic Analysis and Design of Modern Steel Highway Connectors. <i>Earthquake Spectra</i> , 1996 , 12, 275-29	96.4	10	
26	Transverse displacement capacity and stiffness of steel plate girder bridge superstructures for seismic loads. <i>Journal of Constructional Steel Research</i> , 2007 , 63, 1546-1559	3.8	9	
25	Review of selected recent research on US seismic design and retrofit strategies for steel structures. <i>Structural Control and Health Monitoring</i> , 2005 , 7, 103-114		7	
24	Analytical evaluation of built-up shear links under large deformations. <i>Computers and Structures</i> , 2003 , 81, 681-696	4.5	5	
23	Seismic Response of Full and Hybrid Isolated Curved Bridges 2012 ,		4	
22	Design of a Test-Bed Structure for Shake Table Simulation of the Seismic Performance of Nonstructural Systems 2011 ,		4	
21	Web Yielding, Crippling, and Lateral Buckling under Post Loading. <i>Journal of Structural Engineering</i> , 2007 , 133, 665-673	3	4	
20	Development of built-up shear links as energy dissipators for the seismic protection of long-span bridges. <i>Bridge Structures</i> , 2005 , 1, 19-27	0.7	4	
19	Pretest analysis of shake table response of a two-span steel girder bridge incorporating accelerated bridge construction connections. <i>Frontiers of Structural and Civil Engineering</i> , 2020 , 14, 169-	-184	4	

18	A self-sensing magnetorheological elastomer-based adaptive bridge bearing with a wireless data monitoring system 2016 ,		4
17	Seismic performance analysis and assessment of a precast bridge computational model. <i>DYNA</i> (Colombia), 2020 , 87, 80-89	0.6	3
16	Recent Developments in the Seismic Design of Bridges With Steel-Plate Girder Superstructures. Journal of Earthquake Engineering, 2010 , 14, 1113-1138	1.8	3
15	Comparison of Seismic Performance of Socket and Pocket Connections for Reinforced Concrete Bridge Column Base Hinges. <i>Transportation Research Record</i> , 2020 , 2674, 349-360	1.7	3
14	A large-scale adaptive magnetorheological elastomer-based bridge bearing 2017,		2
13	Improving the stability of bridge column rebar cages during construction. <i>Bridge Structures</i> , 2012 , 8, 49-	59 .7	2
12	Performance of an unprotected steel structure subjected to repeated fire at a firefighter training facility. <i>Fire Safety Journal</i> , 2007 , 42, 81-90	3.3	2
11	Fatigue Testing of Double-Angle Connections of Steel Railroad Bridges. <i>Transportation Research Record</i> , 1999 , 1688, 46-52	1.7	2
10	Experimental and Analytical Studies of Hospital Piping Assemblies Subjected to Seismic Loading 2011 ,		1
9	Flange and web limit states in beams subjected to patch loading. <i>Journal of Constructional Steel Research</i> , 2007 , 63, 45-54	3.8	1
8	Seismic Design and Response of Framed Structures with Stiffening Bracing Systems. <i>Journal of Earthquake Engineering</i> , 2019 , 23, 625-647	1.8	1
7	Analytical studies and design of steel plate girder ABC bridges under seismic loads. <i>Engineering Structures</i> , 2021 , 227, 111453	4.7	1
6	Seismic behavior and design of steel girder bridges with integral abutments. <i>Bridge Structures</i> , 2014 , 10, 117-128	0.7	0
5	Large-Scale Biaxial Shake-Table Studies of a Precast Bridge Model. <i>Journal of Structural Engineering</i> , 2021 , 147, 04021104	3	O
4	Biaxial Seismic Performance of a Two-Span Concrete Bridge Model with Six ABC Connections. Journal of Bridge Engineering, 2021 , 26, 04021056	2.7	0
3	Seismic performance of a two-span steel girder bridge with ABC connections. <i>Engineering Structures</i> , 2021 , 241, 112502	4.7	O
2	Closure to Tyclic Behavior of Shear Links of Various Grades of Plate Steel by Peter Dusicka, Ahmad M. Itani, and Ian G. Buckle. <i>Journal of Structural Engineering</i> , 2012 , 138, 837-838	3	
1	Design of bridge falsework for gravity loads. <i>Bridge Structures</i> , 2006 , 2, 155-168	0.7	