Walter Lang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7091625/publications.pdf

Version: 2024-02-01

327 papers	6,348 citations	40 h-index	98798 67 g-index
339	339	339	4452 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Digital Twin Features for the Intelligent Container. Lecture Notes in Logistics, 2022, , 217-228.	0.8	3
2	Considerations and Limits of Embedding Sensor Nodes for Structural Health Monitoring into Fiber Metal Laminates. Sensors, 2022, 22, 4511.	3.8	0
3	Using piezoresistive pressure sensors for resin flow monitoring in wind turbine blades. Materials Today: Proceedings, 2021, 34, 140-148.	1.8	6
4	An Investigation on High-Resolution Temperature Measurement in Precision Fly-Cutting. Sensors, 2021, 21, 1530.	3.8	5
5	Design and evaluation of a freeform lens-array for a structured light illumination. OSA Continuum, 2021, 4, 774.	1.8	2
6	Screen-Printed Resistive Pressure Sensors: Influence of Electrode Geometry on the Performance and on Cross-Sensitivity to Strain and Temperature. Journal of Physics: Conference Series, 2021, 1837, 012004.	0.4	4
7	Flexible passive LC resonator for wireless measurement during curing of thermosets. Journal of Physics: Conference Series, 2021, 1837, 012001.	0.4	3
8	An Assessment of Surface Treatments for Adhesion of Polyimide Thin Films. Polymers, 2021, 13, 1955.	4. 5	19
9	Synthesis and Characterization of Ligandâ€Linked Pt Nanoparticles: Tunable, Threeâ€Dimensional, Porous Networks for Catalytic Hydrogen Sensing. ChemistryOpen, 2021, 10, 697-712.	1.9	4
10	Low-Cost and Highly Sensitive Pressure Sensor with Mold-Printed Multi-Walled Carbon Nanotubes Dispersed in Polydimethylsiloxane. Sensors, 2021, 21, 5069.	3.8	6
11	Characterization of specular freeform surfaces from reflected ray directions using experimental ray tracing. Journal of Sensors and Sensor Systems, 2021, 10, 261-270.	0.9	1
12	Towards Long-Term Stable Polyimide-Based Flexible Electrical Insulation for Chronically Implanted Neural Electrodes. Micromachines, 2021, 12, 1279.	2.9	12
13	Stainless-Steel Antenna on Conductive Substrate for an SHM Sensor System with High Power Demand. Sensors, 2021, 21, 7841.	3 . 8	O
14	15 Years of Intelligent Container Research. , 2021, , 227-247.		3
15	Carbon Nanotubes/Polymer Films for Microsensors Applications. , 2021, , .		4
16	Experimental Study on Stress Impact during FML Manufacturing on the Functional Conformity of an Embeddable SHM-Sensor-Node. , 2021, 10, .		2
17	Micro-Oscillator as Integrable Sensor for Structure-Borne Ultrasound. , 2021, 10, .		2
18	A Combined Thin Film/Thick Film Approach to Realize an Aluminum-Based Strain Gauge Sensor for Integration in Aluminum Castings. Sensors, 2020, 20, 3579.	3.8	3

#	Article	IF	CITATIONS
19	Characterization of a highly sensitive and selective hydrogen gas sensor employing Pt nanoparticle network catalysts based on different bifunctional ligands. Sensors and Actuators B: Chemical, 2020, 322, 128619.	7.8	9
20	In-Situ Sub-Surface Strain Measurement in Deep Rolling Processes. , 2020, , .		0
21	Hybrid Directed Energy Deposition for Fabricating Metal Structures with Embedded Sensors for the Oil and Gas Industry. , 2020, , .		0
22	Characterization and Design Evaluation of Membrane-Based Calorimetric MEMS Sensors for Two-Dimensional Flow Measurement. IEEE Sensors Journal, 2020, 20, 4602-4609.	4.7	11
23	Hybrid directed energy deposition for fabricating metal structures with embedded sensors. Additive Manufacturing, 2020, 35, 101397.	3.0	14
24	Using RFID to Monitor the Curing of Aramid Fiber Reinforced Polymers. Lecture Notes in Logistics, 2020, , 441-450.	0.8	1
25	Condition Monitoring of O-Ring Seals with Integrated Strain Gauges and Finite Element Analysis Assisted Signal Evaluation. Procedia Manufacturing, 2020, 52, 56-60.	1.9	1
26	Editorial: System-Integrated Intelligence – Intelligent, Flexible and Connected Systems in Products and Production. Procedia Manufacturing, 2020, 52, 1-3.	1.9	0
27	Towards self-healing biomimetic hair flow sensor. Procedia Manufacturing, 2020, 52, 44-49.	1.9	2
28	Online monitoring of thermoplastic crystallization with miniaturized interdigital sensors. , 2020, , .		0
29	Visual epidural field potentials possess high functional specificity in single trials. Journal of Neurophysiology, 2019, 122, 1634-1648.	1.8	7
30	Embedded Wireless Sensor Systems for Resin Flow Monitoring in Glass and Carbon Fiber Composites. IEEE Sensors Journal, 2019, 19, 10654-10661.	4.7	6
31	In-Vitro and In-Vivo Longevity Evaluation of Free-Floating Intracortical Silicon-Stiffened Neural Probes. , 2019, , .		2
32	Design and Fabrication Challenges of a Highly Sensitive Thermoelectric-Based Hydrogen Gas Sensor. Micromachines, 2019, 10, 650.	2.9	10
33	Highly Sensitive and Selective Hydrogen Gas Sensor with Platinum Nanoparticles Linked by 4,4"-Diamino-P-Terphenyl (Dater). , 2019, , .		3
34	Online Monitoring of Moisture Diffusion in Carbon Fiber Composites Using Miniaturized Flexible Material Integrated Sensors. Sensors, 2019, 19, 1748.	3.8	12
35	Design and Manufacturing of a Disposable, Cyclo-Olefin Copolymer, Microfluidic Device for a Biosensor â€. Sensors, 2019, 19, 1178.	3.8	14
36	Ligand-Linked Nanoparticles-Based Hydrogen Gas Sensor with Excellent Homogeneous Temperature Field and a Comparative Stability Evaluation of Different Ligand-Linked Catalysts. Sensors, 2019, 19, 1205.	3.8	8

#	Article	IF	Citations
37	Online monitoring of shape memory polymers with a material integrated flexible interdigital sensor. , 2019, , .		1
38	Functionalization of Semi-Finished Parts by Printed Interdigital Structures for Cure Monitoring of Adhesive Joints. IEEE Sensors Journal, 2019, 19, 2370-2377.	4.7	2
39	A Flexible 202-Channel Epidural ECoG Array With PEDOT: PSS Coated Electrodes for Chronic Recording of the Visual Cortex. IEEE Sensors Journal, 2019, 19, 820-825.	4.7	25
40	Functional concept for the source independent beam-shaping of LED light. OSA Continuum, 2019, 2, 759.	1.8	1
41	Precise measurement of known and unknown freeform surfaces using Experimental Ray Tracing. , 2019, , .		1
42	Measurement of form and mid-spatial-frequency errors of specular freeform surfaces., 2019,,.		0
43	Measuring Material Moisture in Fiber Reinforced Polymers by Integrated Sensors. IEEE Sensors Journal, 2018, 18, 3836-3843.	4.7	9
44	Online monitoring of the curing of adhesives with a miniaturised interdigital sensor using impedance spectroscopy. Journal of Adhesion Science and Technology, 2018, 32, 772-786.	2.6	8
45	A Disposable, Cyclo-Olefin Copolymer, RNA Microfluidic Sensor for Bacteria Detection. , 2018, , .		1
46	A Micromachined, Membrane Based, Thermoelectric Flow Sensor for 2-Dimensional Measurement with High Angular Resolution. , 2018 , , .		1
47	Wireless Piezoresistive Pressure Sensors Used for Quality Control in Glass Fiber Composite Laminates., 2018,,.		3
48	Challenges and Opportunities of RFID Sensortags Integration by Fibre-Reinforced Plastic Components Production. Procedia Manufacturing, 2018, 24, 54-59.	1.9	6
49	Integrating sensors in castings made of aluminum – new approaches for direct sensor integration in gravity die casting. Procedia Manufacturing, 2018, 24, 179-184.	1.9	7
50	Influence of strain on miniaturized flexible sensor for on-line monitoring of CFRP production. Procedia Manufacturing, 2018, 24, 173-178.	1.9	1
51	Simultaneous Measurement of Strain and Temperature with two Resistive Strain Gauges made from Different Materials. Procedia Manufacturing, 2018, 24, 258-263.	1.9	8
52	Testing Lora for food applications - Example application for airflow measurements inside cooled warehouses with apples. Procedia Manufacturing, 2018, 24, 284-289.	1.9	11
53	Design Parameters for the Housing of Two-Dimensional Air Flow Sensors. IEEE Sensors Journal, 2018, 18, 10154-10162.	4.7	6
54	Design of Novel Ceramic Preconcentrator and Integration in Gas Chromatographic System for Detection of Ethylene Gas from Ripening Bananas. Sensors, 2018, 18, 2589.	3.8	10

#	Article	IF	Citations
55	A Fungus Spores Dataset and a Convolutional Neural Network Based Approach for Fungus Detection. IEEE Transactions on Nanobioscience, 2018, 17, 281-290.	3.3	42
56	Silicon-Based Microfabrication of Free-Floating Neural Probes and Insertion Tool for Chronic Applications. Micromachines, 2018, 9, 131.	2.9	12
57	PEDOT: PSS coating on gold microelectrodes with excellent stability and high charge injection capacity for chronic neural interfaces. Sensors and Actuators B: Chemical, 2018, 275, 382-393.	7.8	81
58	8-Channel Neural Stimulation ASIC for Epidural Visual Cortex Stimulation. Journal of Circuits, Systems and Computers, 2017, 26, 1740008.	1.5	3
59	Smart aluminum components: Printed sensors for integration into aluminum during high-pressure casting. Journal of Manufacturing Processes, 2017, 26, 166-172.	5.9	12
60	Study of resin flow in carbon fiber reinforced polymer composites by means of pressure sensors. Journal of Composite Materials, 2017, 51, 3585-3594.	2.4	7
61	Design and evaluation of a freeform lens by using a method of luminous intensity mapping and a differential equation. , 2017, , .		2
62	Computational fluid dynamics modelling of deviating airflow and cooling conditions in banana containers. Acta Horticulturae, 2017, , 193-200.	0.2	4
63	Challenges and opportunities in remote monitoring of perishable products. Food Packaging and Shelf Life, 2017, 14, 18-25.	7.5	24
64	Reduction of power consumption and expansion of the measurement range by pulsed excitation of thermal flow sensors. Sensors and Actuators A: Physical, 2017, 265, 313-320.	4.1	8
65	HV compliant current driver with on-chip read-out protection switch for neural stimulation. Analog Integrated Circuits and Signal Processing, 2017, 92, 415-426.	1.4	3
66	Sensors on a plasticized thermoset substrate for cure monitoring of CFRP production. Sensors and Actuators A: Physical, 2017, 267, 560-566.	4.1	15
67	Fungus Detection Through Optical Sensor System Using Two Different Kinds of Feature Vectors for the Classification. IEEE Sensors Journal, 2017, 17, 5341-5349.	4.7	17
68	An efficient and simple embedded system of fungus detection system. , 2017, , .		3
69	A flexible multichannel ECoG array with PEDOT-coated electrodes for minimally invasive recording and stimulation. , 2017, , .		1
70	Housing design for two-dimensional air flow sensors. , 2017, , .		2
71	Spatial processing of sensor network data: Demonstrator and feasibility study. , 2017, , .		1
72	Using Allan variance to determine the resolution of ethylene gas chromatographic system. , 2017, , .		1

#	Article	IF	Citations
73	Piezoresistive Pressure Sensors for Resin Flow Monitoring in Carbon Fibre-Reinforced Composite. Proceedings (mdpi), 2017, 1 , .	0.2	2
74	Highly Stable PEDOT:PSS Coating on Gold Microelectrodes with Improved Charge Injection Capacity for Chronic Neural Stimulation. Proceedings (mdpi), 2017, 1 , .	0.2	18
75	Demonstration of Intracortical Chronic Recording and Acute Microstimulation Using Novel Floating Neural Probes. Proceedings (mdpi), 2017, 1 , .	0.2	6
76	Screen-Printed Interdigital Structure on Flexible RTM6 Substrate. Proceedings (mdpi), 2017, 1, 612.	0.2	1
77	Surface Integrated Printed Interdigital Structure for Process Monitoring the Curing of an Adhesive Joint. Proceedings (mdpi), 2017, 1 , .	0.2	2
78	Experimental and Numerical Investigations in Shallow Cut Grinding by Workpiece Integrated Infrared Thermopile Array. Sensors, 2017, 17, 2250.	3.8	2
79	A Gas Chromatographic System for the Detection of Ethylene Gas Using Ambient Air as a Carrier Gas. Sensors, 2017, 17, 2283.	3.8	27
80	Intelligent Machine Parts: Challenges in the Condition Monitoring of Elastomer Gaskets with Integrated Sensors. Proceedings (mdpi), 2017, 1, .	0.2	1
81	Online Monitoring of Composites with a Miniaturized Flexible Combined Dielectric and Temperature Sensor. Proceedings (mdpi), 2017, 1, .	0.2	7
82	Implications for a Wireless, External Device System to Study Electrocorticography. Sensors, 2017, 17, 761.	3.8	4
83	Printed Sensors for Material Integrated Sensing: Functionalization of Semi-Finished Parts. Proceedings (mdpi), 2017, 1, .	0.2	2
84	Measuring strain during a cylindrical grinding process using embedded sensors in a workpiece. Journal of Sensors and Sensor Systems, 2017, 6, 331-340.	0.9	4
85	Advantages of Sub-GHz Communication in Food Logistics and DASH7 Implementation. Lecture Notes in Logistics, 2017, , 219-228.	0.8	0
86	Airflow Behavior Under Different Loading Schemes and Its Correspondence to Temperature in Perishables Transported in Refrigerated Containers. Lecture Notes in Logistics, 2017, , 481-490.	0.8	0
87	Combining the transformation and the integration methods to design a refractive lens-array for signal lighting applications. , 2017, , .		0
88	An Impedance-Based Mold Sensor with on-Chip Optical Reference. Sensors, 2016, 16, 1603.	3.8	9
89	Detection of Ethylene Using Gas Chromatographic System. Procedia Engineering, 2016, 168, 380-383.	1.2	17
90	Material integrated sensors for an optimal baseline selection on a wireless SHM network., 2016,,.		2

#	Article	IF	Citations
91	Strain gauge printed on carbon weave for sensing in carbon fiber reinforced plastics. , 2016, , .		6
92	Pulsed Excitation of Thermal Flow Sensors for Reduced Power Consumption and Expanded Measurement Range. Procedia Engineering, 2016, 168, 762-765.	1.2	2
93	Plasticisation of Epoxy Resin Transfer Molding Substrate for Fabrication of Interdigital Capacitive Sensors. Procedia Engineering, 2016, 168, 1110-1113.	1.2	3
94	A Multi-Nozzle Electrospray Emitter for Pneumatically Assisted Electrospray in LC-MS Analysis. Procedia Engineering, 2016, 168, 1366-1369.	1.2	2
95	Steel Integrated IR Thermopile Array for Characterizing Grinding Processes. Procedia Engineering, 2016, 168, 1568-1572.	1.2	1
96	Membrane-sealed Bioreactor for On-site Autonomous Detection of Fungi Spore Contamination in Archives. Procedia Engineering, 2016, 168, 529-532.	1.2	2
97	Compressed radio transmission of spatial field measurements by virtual sensors. , 2016, , .		2
98	Current driver with read-out HV protection for neural stimulation. , 2016, , .		3
99	Detection of fungus through an optical sensor system using the histogram of oriented gradients. , 2016, , .		9
100	Fungus Detection System., 2016,,.		7
101	Development of a Fungal Risk Monitor for the next generation of intelligent containersaper. , 2016, , .		2
102	Foil-based strain gauges with nanogranular platinum structures for the integration in elastomer gaskets. , $2016, , .$		1
103	Design, fabrication and embedding of microscale interdigital sensors for real-time cure monitoring during composite manufacturing. Sensors and Actuators A: Physical, 2016, 243, 123-133.	4.1	55
104	An easy fabrication process of fully-sealed parylene microfluidic channels with a single deposition step. Microsystem Technologies, 2016, 22, 1927-1932.	2.0	1
105	Comparison of Several Optical Methods for an Automated Fungal Spore Sensor System Concept. IEEE Sensors Journal, 2016, 16, 5596-5602.	4.7	8
106	Steel integrated thin film sensors for characterizing grinding processes. Sensors and Actuators A: Physical, 2016, 242, 203-209.	4.1	10
107	Design and fabrication of novel multi-channel floating neural probes for intracortical chronic recording. Sensors and Actuators A: Physical, 2016, 247, 125-135.	4.1	32
108	What Can MEMS Do for Logistics of Food? Intelligent Container Technologies: A Review. IEEE Sensors Journal, 2016, 16, 6810-6818.	4.7	19

#	Article	IF	Citations
109	Wireless actuation of piezo-elements for the structural health monitoring of carbon-fiber-reinforced-polymers. Mechatronics, 2016, 34, 128-136.	3.3	6
110	Strain gauges based on NBR substrates for the integration into elastic materials. Materials Letters, 2016, 172, 60-63.	2.6	3
111	Materialintegrierte Sensorik f $ ilde{A}$ 4r Fahrzeug-Leichtbautechnik. , 2016, , 191-216.		0
112	Miniature 3D Gas Chromatography Columns with Integrated Fluidic Connectors Using High-resolution Stereolithography Fabrication. Procedia Engineering, 2015, 120, 703-706.	1.2	29
113	Design and fabrication of multi-contact flexible silicon probes for intracortical floating implantation. , 2015, , .		6
114	Systems for locally resolved measurements of physical loads in manufacturing processes. CIRP Annals - Manufacturing Technology, 2015, 64, 495-498.	3.6	14
115	None Hazardous Chemical Method for Etching Thin Film Silicon Nitride Using Aqueous Solutions of Chelating Agents. Procedia Engineering, 2015, 120, 1107-1110.	1.2	4
116	Accelerated soak performance of BPDA-PPD polyimide for implantable MEAs. Procedia Engineering, 2015, 120, 36-40.	1.2	15
117	A multi-purpose ultrasonic streaming mixer for integrated magnetic bead ELISAs. Journal of Micromechanics and Microengineering, 2015, 25, 104001.	2.6	12
118	The intelligent container â€" What can MEMS do for logistics of food?. , 2015, , .		3
119	Impedance spectroscopy for detection of mold in archives with an integrated reference measurement. Proceedings of SPIE, 2015, , .	0.8	2
120	Investigations on the Impact of Material-Integrated Sensors with the Help of FEM-Based Modeling. Sensors, 2015, 15, 2336-2353.	3.8	14
121	Embedding Piezoresistive Pressure Sensors to Obtain Online Pressure Profiles Inside Fiber Composite Laminates. Sensors, 2015, 15, 7499-7511.	3.8	28
122	A Multi-Channel, Flex-Rigid ECoG Microelectrode Array for Visual Cortical Interfacing. Sensors, 2015, 15, 832-854.	3.8	40
123	Inductive wireless sensor-actuator node for structural health monitoring of fiber reinforced polymers by means of Lamb-waves. Proceedings of SPIE, 2015, , .	0.8	2
124	Sensor integration in rubber gaskets for structural health monitoring made by compression molding. Polymer Testing, 2015, 48, 31-36.	4.8	13
125	Fabrication of parylene channels embedded in silicon using a single parylene deposition step. Proceedings of SPIE, 2015, , .	0.8	0
126	Cokriging for cross-attribute fusion in sensor networks. Information Fusion, 2015, 24, 137-146.	19.1	5

#	Article	IF	CITATIONS
127	Investigations into packaging technology for membrane-based thermal flow sensors. Journal of Sensors and Sensor Systems, 2015, 4, 45-52.	0.9	7
128	Temperature Modulation of a Catalytic Gas Sensor. Sensors, 2014, 14, 20372-20381.	3.8	17
129	Embedded Strain Gauges for Condition Monitoring of Silicone Gaskets. Sensors, 2014, 14, 12387-12398.	3.8	19
130	Smart Sensors for the Intelligent Container. , 2014, , .		11
131	Remote quality monitoring in the banana chain. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130303.	3.4	54
132	Failure of Silicon Substrates Embedded in Epoxy Resin. Procedia Technology, 2014, 15, 216-220.	1.1	7
133	Reducing food losses by intelligent food logistics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130302.	3.4	160
134	Low-frequency Inductive Power Transmission for Piezo-Wafer-Active-Sensors in the Structural Health Monitoring of Carbon-Fiber-Reinforced-Polymer. Procedia Technology, 2014, 15, 648-657.	1,1	9
135	Monocrystalline-silicon-based thermogenerator with broad temperature working range embedded using metal-spray-deposition. Sensors and Actuators A: Physical, 2014, 216, 417-425.	4.1	0
136	Stabilizing Catalytically Active Nanoparticles by Ligand Linking: Toward Three-Dimensional Networks with High Catalytic Surface Area. Langmuir, 2014, 30, 5564-5573.	3.5	25
137	Ligand-stabilized Pt nanoparticles (NPs) as novel materials for catalytic gas sensing: influence of the ligand on important catalytic properties. Physical Chemistry Chemical Physics, 2014, 16, 21243-21251.	2.8	18
138	Sensorial Surfaces-Embedding Sensor Structures Into the Surface of Materials. IEEE Sensors Journal, 2014, 14, 2078-2083.	4.7	5
139	Embedding rigid and flexible inlays in carbon fiber reinforced plastics. , 2014, , .		4
140	Miniaturized Flexible Interdigital Sensor for <italic>In Situ</italic> Dielectric Cure Monitoring of Composite Materials. IEEE Sensors Journal, 2014, 14, 2193-2197.	4.7	42
141	Integration Without Disruption: The Basic Challenge of Sensor Integration. IEEE Sensors Journal, 2014, 14, 2102-2111.	4.7	50
142	Resistive silicon microstructure for embedding in aluminium during casting., 2014,,.		1
143	Micropatterning of nanoparticle films by bilayer lift-off. Journal of Micromechanics and Microengineering, 2014, 24, 015001.	2.6	6
144	Wireless Power Transmission for Structural Health Monitoring of Fiber-Reinforced-Composite Materials. IEEE Sensors Journal, 2014, 14, 2171-2176.	4.7	37

#	Article	IF	CITATIONS
145	Ethylene detection in fruit supply chains. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130311.	3.4	79
146	High sensitive and selective ethylene measurement by using a large-capacity-on-chip preconcentrator device. Sensors and Actuators B: Chemical, 2014, 197, 405-413.	7.8	36
147	A fast and sensitive catalytic gas sensors for hydrogen detection based on stabilized nanoparticles as catalytic layer. Sensors and Actuators B: Chemical, 2014, 193, 895-903.	7.8	49
148	On-chip Monitoring of pH Change in Agar-gels during Fungi Growth by Integrating Impedance and Colorimetric Principles. Procedia Engineering, 2014, 87, 373-376.	1.2	4
149	Flexible Flow Measuring System for Measurements on Non-planar Surfaces. Procedia Technology, 2014, 15, 238-247.	1.1	0
150	Strain gauges & Strain gauges		0
151	A miniaturized catalytic gas sensor for hydrogen detection based on stabilized nanoparticles as catalytic layer. Sensors and Actuators B: Chemical, 2013, 187, 420-425.	7.8	27
152	Bend sensor based on fibreoptics and concept for a compact evaluation unit. Production Engineering, 2013, 7, 15-22.	2.3	1
153	Sea transport of bananas in containers – Parameter identification for a temperature model. Journal of Food Engineering, 2013, 115, 330-338.	5.2	57
154	Development of a Fully Implantable Recording System for ECoG Signals., 2013,,.		11
155	Membrane-based thermal flow sensors on flexible substrates. Sensors and Actuators A: Physical, 2013, 195, 113-122.	4.1	29
156	Application of a miniaturised packed gas chromatography column and a SnO2 gas detector for analysis of low molecular weight hydrocarbons with focus on ethylene detection. Sensors and Actuators B: Chemical, 2013, 180, 43-49.	7.8	49
157	Influence of the electrode distance and metal ion concentration on the resulting structure in electrochemical micromachining with structured counter electrodes. International Journal of Machine Tools and Manufacture, 2013, 72, 25-31.	13.4	27
158	A low-power wireless UHF/LF sensor network with web-based remote supervision $\$\#x2014;$ Implementation in the intelligent container. , 2013, , .		4
159	Minimum Detectable Air Velocity by Thermal Flow Sensors. Sensors, 2013, 13, 10944-10953.	3.8	14
160	Development of hydrogenated amorphous carbon thin film with high electrical resistance for use in embedded sensors in abrasive environment. Journal of Intelligent Material Systems and Structures, 2013, 24, 2197-2203.	2.5	1
161	Characterization of Thermal Flow Sensors for Air Flow Measurements in Transport Containers. Lecture Notes in Logistics, 2013, , 361-370.	0.8	0
162	Combining Machine-to-Machine Communications with Intelligent Objects in Logistics. Communications in Computer and Information Science, 2012, , 102-112.	0.5	0

#	Article	IF	Citations
163	Boundary Layer Separation and Reattachment Detection on Airfoils by Thermal Flow Sensors. Sensors, 2012, 12, 14292-14306.	3.8	34
164	A nanoparticles based catalytic gas sensor with improved stability., 2012,,.		1
165	Implementation and Verification of a Low-Power UHF/LF Wireless Sensor Network as Part of the Intelligent Container. Procedia Engineering, 2012, 47, 68-71.	1.2	7
166	A Miniaturized Catalytic Gas Sensor for Hydrogen Detection Containing a High Porous Catalytic Layer Formed by Dry Lift-Off. Procedia Engineering, 2012, 47, 1149-1152.	1.2	1
167	Gas Chromatograph based on Packed μGC-Columns and μ-Preconcentrator Devices for Ethylene Detection in Fruit Logistic Applications. Procedia Engineering, 2012, 47, 486-489.	1.2	9
168	Temperature Sensor Measurement System for Firefighter Gloves. Procedia Engineering, 2012, 47, 611-614.	1.2	11
169	Novel catalytic gas sensors based on functionalized nanoparticle layers. Sensors and Actuators B: Chemical, 2012, 174, 145-152.	7.8	17
170	Design and Fabrication of a Micropreconcentrator Focuser for Sensitivity Enhancement of Chemical Sensing Systems. IEEE Sensors Journal, 2012, 12, 2528-2534.	4.7	4
171	Embedding without disruption: The basic challenge of sensor integration. , 2012, , .		1
172	Detection limit improvement for NDIR ethylene gas detectors using passive approaches. Sensors and Actuators B: Chemical, 2012, 175, 246-254.	7.8	43
173	Thermoelectric Flow Sensor Integrated Into an Inductively Powered Wireless System. IEEE Sensors Journal, 2012, 12, 1891-1892.	4.7	5
174	Merging ethylene NDIR gas sensors with preconcentrator-devices for sensitivity enhancement. Sensors and Actuators B: Chemical, 2012, 170, 21-27.	7.8	20
175	A Thermoelectric Energy Harvester Directly Embedded Into Casted Aluminum. IEEE Electron Device Letters, 2012, 33, 233-235.	3.9	28
176	Strategies for Passive Sensitivity Improvement of NDIR Ethylene Gas Detectors. Procedia Engineering, 2011, 25, 1153-1156.	1.2	2
177	The "Intelligent Containerâ€â€"A Cognitive Sensor Network for Transport Management. IEEE Sensors Journal, 2011, 11, 688-698.	4.7	88
178	Modeling of the Response Time of Thermal Flow Sensors. Micromachines, 2011, 2, 385-393.	2.9	20
179	Testing network protocols and signal attenuation in packed food transports. International Journal of Sensor Networks, 2011, 9, 170.	0.4	31
180	Manufacturing of a wear detecting sensor made of 17-4PH steel using standard wafer processing technology. Sensors and Actuators A: Physical, 2011, 171, 34-37.	4.1	9

#	Article	IF	CITATIONS
181	Response time of thermal flow sensors with air as fluid. Sensors and Actuators A: Physical, 2011, 172, 15-20.	4.1	41
182	From embedded sensors to sensorial materials—The road to function scale integration. Sensors and Actuators A: Physical, 2011, 171, 3-11.	4.1	56
183	Sensorial materials—A vision about where progress in sensor integration may lead to. Sensors and Actuators A: Physical, 2011, 171, 1-2.	4.1	14
184	Dynamic localization based on spatial reasoning with RSSI in wireless sensor networks for transport logistics. Sensors and Actuators A: Physical, 2011, 171, 421-428.	4.1	42
185	A microfluidic preconcentrator for enhanced monitoring of ethylene gas. Sensors and Actuators A: Physical, 2011, 167, 226-230.	4.1	15
186	A novel flex-rigid and soft-release ECoG array. , 2011, 2011, 2973-6.		10
187	Humidity influence in application of & amp; #x00B5; GC-Systems for ethylene gas with preconcentrator devices and SnO< inf> 2< /inf> based detectors. , 2011, , .		0
188	Interpolation of spatial temperature profiles by sensor networks., 2011,,.		11
189	Embedded Intelligent Objects in Food Logistics Technical Limits of Local Decision Making. , 2011, , 207-228.		6
190	Thin Chip Flow Sensors for Nonplanar Assembly. , 2011, , 377-387.		1
191	A highly sensitive catalytic gas sensor for hydrogen detection based on sputtered nanoporous platinum. Procedia Engineering, 2010, 5, 123-126.	1.2	13
192	A Temperature Compensation Circuit for Thermal Flow Sensors Operated in Constant-Temperature-Difference Mode. IEEE Transactions on Instrumentation and Measurement, 2010, 59, 1715-1721.	4.7	58
193	Monitoring of Machining Processes Using Sensor Equipped Tools. Advanced Engineering Materials, 2010, 12, 641-645.	3.5	4
194	Dynamic indoor localization using multilateration with RSSI in wireless sensor networks for transport logistics. Procedia Engineering, 2010, 5, 220-223.	1.2	22
195	Response time of thermal flow sensors. Procedia Engineering, 2010, 5, 524-527.	1.2	6
196	Merging ethylene NDIR gas sensors with preconcentrator-devices for sensitivity enhancement. Procedia Engineering, 2010, 5, 1192-1195.	1.2	4
197	A nickel electrostatic curved beam actuator for valve applications. Procedia Engineering, 2010, 5, 1409-1412.	1.2	3
198	A micromachined preconcentrator for ethylene monitoring system. Sensors and Actuators B: Chemical, 2010, 151, 304-307.	7.8	15

#	Article	IF	Citations
199	Versatile Crackâ€Free Ceramic Micropatterns Made by a Modified Molding Technique. Journal of the American Ceramic Society, 2010, 93, 2574-2578.	3.8	16
200	Inline chemical process analysis in micro-plants based on thermoelectric flow and impedimetric sensors. Measurement Science and Technology, 2010, 21, 105203.	2.6	2
201	Miniaturized thermal flow sensors with through silicon vias for flip-chip packaging. , 2010, , .		1
202	Application of bio-inspired data processing in intelligent transportation systems. , 2010, , .		2
203	Low level ethylene detection using preconcentrator/sensor combinations., 2010,,.		9
204	Advanced Bio-inspired Plausibility Checking in a Wireless Sensor Network Using Neuro-immune Systems: Autonomous Fault Diagnosis in an Intelligent Transportation System. , 2010, , .		6
205	Dynamic control of data measurement intervals in a networked sensing system using neurocomputing. , 2010, , .		4
206	Adaptive data sensing rate in ad-hoc sensor networks for autonomous transport application. , 2010, , .		0
207	Thermoelectric flow sensors on flexible substrates and their integration process. , 2010, , .		3
208	Optimal Sample Number for Autonomous and Central Wireless Sensor Actuator Network. Lecture Notes in Electrical Engineering, 2010, , 495-505.	0.4	0
209	Measurement Results of the First Two Chip Silicon Microphone with Low Stress Nickel Membrane Covering Full Audio Range., 2009,,.		0
210	Energy saving by using floating input approach in a wireless sensor network., 2009,,.		1
211	Novel impedimetric and perforated thermal flow sensor for inline chemical process analysis in micro residence time reactors., 2009,,.		1
212	Application of Neurocomputing for Data Approximation and Classification in Wireless Sensor Networks. Sensors, 2009, 9, 3056-3077.	3.8	15
213	Condensation Detection Using a Wirelessly Powered RF-Temperature Sensor. IEEE Transactions on Vehicular Technology, 2009, 58, 1667-1672.	6.3	9
214	Spatial temperature profiling by semi-passive RFID loggers for perishable food transportation. Computers and Electronics in Agriculture, 2009, 65, 145-154.	7.7	204
215	Novel pressure stable thermoelectric flow sensor in non-steady state operation mode for inline process analysis in micro reactors. Procedia Chemistry, 2009, 1, 148-151.	0.7	5
216	Combination of a novel perforated thermoelectric flow and impedimetric sensor for monitoring chemical conversion in micro fluidic channels. Procedia Chemistry, 2009, 1, 1127-1130.	0.7	7

#	Article	IF	CITATIONS
217	Temperature stability improvement of thin-film thermopiles by implementation of a diffusion barrier of TiN. , 2009, , .		9
218	An Experimental Study of Signal Propagation and Network Performance in Monitoring of Food Transportation. , 2009, , .		5
219	Robustness in Autonomous and Central Wireless Sensor Network: The Orchard Example. , 2009, , .		1
220	The Minimum Number of Sensors – Interpolation of Spatial Temperature Profiles in Chilled Transports. Lecture Notes in Computer Science, 2009, , 232-246.	1.3	10
221	Toward Flexible Thermoelectric Flow Sensors: A New Technological Approach. Journal of Microelectromechanical Systems, 2008, 17, 1114-1119.	2.5	44
222	Thermodynamic analysis of a novel thermoelectric microdroplet sensor. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2008, , .	0.0	2
223	Adaptive Production and Inventory Control in Supply Chains against Changing Demand Uncertainty., 2008, , 143-150.		O
224	SCAR: Sequential Coordinate Routing Algorithm for Autonomous Wireless Sensor Network. , 2008, , .		0
225	Application of data approximation and classification in measurement systems - comparison of "neural network" and "Least Squares" approximation. , 2008, , .		4
226	Shelf Life Prediction by Intelligent RFID – Technical Limits of Model Accuracy. , 2008, , 231-238.		9
227	The Benefits of Embedded Intelligence – Tasks and Applications for Ubiquitous Computing in Logistics. , 2008, , 105-122.		28
228	Dynamic Decision Making on Embedded Platforms in Transport Logistics – A Case Study. , 2008, , 191-198.		1
229	Herausforderungen in der Entwicklung passiver HF-Sensoren (Challenges in the Development of) Tj ETQq1 1 0.784	1314 rgBT 0.7	/Overlock
230	Contactless Liquid Level Sensing using Wave Damping Phenomena in Free-Space., 2007,,.		1
231	Ultra Low Tensile Stress Electroplated Nickel Layers: A New Application as Membrane Material for Acoustic Devices., 2007,,.		1
232	Simple Modeling of the Thermal Behavior of a Tiny Liquid Splat on a Thermal Microsensor. Journal of Microelectromechanical Systems, 2007, 16, 473-479.	2.5	2
233	Evaporation Model of Micro-Menisci for Thermoelectric Drop Sensor., 2007, , .		1
234	Semi-passive RFID and beyond: steps towards automated quality tracing in the food chain. International Journal of Radio Frequency Identification Technology and Applications, 2007, 1, 247.	0.5	40

#	Article	IF	Citations
235	Vapor-Phase Self-Assembled Monolayers for Anti-Stiction Applications in MEMS. Journal of Microelectromechanical Systems, 2007, 16, 1451-1460.	2.5	77
236	Thermoelectric Flow Sensors with Monolithically Integrated Channel Structures for Measurements of Very Small Flow Rates. , 2007, , .		4
237	Gas phase hydrophobisation of MEMS silicon structures with self-assembling monolayers for avoiding in-use sticking. Sensors and Actuators B: Chemical, 2007, 126, 13-17.	7.8	29
238	Transport Scenario for the Intelligent Container. , 2007, , 393-404.		10
239	Development of a Highly Miniaturized PQT-Sensor for Monitoring and Diagnosing of Pneumatic Systems., 2007,,.		0
240	Applying autonomous sensor systems in logistics—Combining sensor networks, RFIDs and software agents. Sensors and Actuators A: Physical, 2006, 132, 370-375.	4.1	163
241	A high-temperature thermopile fabrication process for thermal flow sensors. Sensors and Actuators A: Physical, 2006, 130-131, 262-266.	4.1	91
242	Thermal stability of vapor phase deposited self-assembled monolayers for MEMS anti-stiction. Journal of Micromechanics and Microengineering, 2006, 16, 2259-2264.	2.6	79
243	New micromachined membrane switches in silicon technology. IEEE Transactions on Components and Packaging Technologies, 2002, 25, 397-401.	1.3	7
244	Decoupled microgyros and the design principle DAVED. Sensors and Actuators A: Physical, 2002, 95, 239-249.	4.1	96
245	Micromachined inclinometer with high sensitivity and very good stability. Sensors and Actuators A: Physical, 2002, 97-98, 125-130.	4.1	88
246	Anisotropic conductive adhesion of microsensors applied in the instance of a low pressure sensor. Sensors and Actuators A: Physical, 2002, 97-98, 323-328.	4.1	9
247	New digital readout electronics for capacitive sensors by the example of micro-machined gyroscopes. Sensors and Actuators A: Physical, 2002, 97-98, 557-562.	4.1	22
248	Structuring of membrane sensors using sacrificial porous silicon. Sensors and Actuators A: Physical, 2000, 84, 315-323.	4.1	54
249	The silicon angular rate sensor system DAVED®. Sensors and Actuators A: Physical, 2000, 84, 280-284.	4.1	26
250	A mechanically controlled oscillator. Sensors and Actuators A: Physical, 2000, 82, 74-78.	4.1	4
251	Reflexions on the future of microsystems. Sensors and Actuators A: Physical, 1999, 72, 1-15.	4.1	42
252	Thermal flow sensor for liquids and gases based on combinations of two principles. Sensors and Actuators A: Physical, 1999, 73, 7-13.	4.1	166

#	Article	IF	CITATIONS
253	A new silicon rate gyroscope. Sensors and Actuators A: Physical, 1999, 73, 45-51.	4.1	43
254	A thermoelectric converter for energy supply. Sensors and Actuators A: Physical, 1999, 74, 246-250.	4.1	74
255	Micromachined switches for low electric loads. Sensors and Actuators A: Physical, 1999, 74, 203-206.	4.1	14
256	Electrostatically actuated micromirror devices in silicon technology. Sensors and Actuators A: Physical, 1999, 74, 216-218.	4.1	12
257	Improved simulation for strongly coupled micro-electro-mechanical systems: resonant vacuum sensor optimization. Sensors and Actuators A: Physical, 1999, 74, 190-192.	4.1	4
258	New designs of micromachined vibrating rate gyroscopes with decoupled oscillation modes. Sensors and Actuators A: Physical, 1998, 66, 118-124.	4.1	32
259	<title>Micromachined angular rate sensor MARS-RR</title> ., 1998, , .		1
260	Micro Electro Mechanical Systems: From Research to Applications. Japanese Journal of Applied Physics, 1998, 37, 7047-7051.	1.5	3
261	Optimization of micromachined membrane switches. Journal of Micromechanics and Microengineering, 1997, 7, 240-243.	2.6	0
262	Optical Characterization of Free-Standing Porous Silicon Films. Journal of Porous Materials, 1997, 4, 227-237.	2.6	15
263	Silicon thermal microrelays with multiple switching states. Sensors and Actuators A: Physical, 1997, 62, 612-615.	4.1	1
264	Technology and RBS analysis of porous silicon light-emitting diodes. Thin Solid Films, 1997, 297, 268-271.	1.8	9
265	Resonant Raman scattering and photoluminescence studies of porous silicon membranes. Journal of Applied Physics, 1996, 79, 8664-8668.	2.5	38
266	Generating a microplasma with porous silicon. Sensors and Actuators A: Physical, 1996, 53, 284-287.	4.1	4
267	Silicon microstructuring technology. Materials Science and Engineering Reports, 1996, 17, 1-55.	31.8	157
268	Time-resolved electroluminescence of porous silicon. Thin Solid Films, 1996, 276, 164-167.	1.8	7
269	Excitation wavelength dependence of Raman and photoluminescence spectra of porous Si membranes. Thin Solid Films, 1996, 276, 73-75.	1.8	8
270	Influence of different metallic contacts on porous silicon electroluminescence. Thin Solid Films, 1996, 276, 159-163.	1.8	15

#	Article	IF	CITATIONS
271	Stability of electroluminescence and photoluminescence of porous silicon. Thin Solid Films, 1996, 276, 284-286.	1.8	10
272	A pressure sensor based on a nitride membrane using single-crystalline piezoresistors. Sensors and Actuators A: Physical, 1996, 54, 488-492.	4.1	16
273	Bulk micromachining of Ge for IR gratings. Journal of Micromechanics and Microengineering, 1996, 6, 46-48.	2.6	6
274	Anisotropic etching of germanium. Sensors and Actuators A: Physical, 1995, 46, 35-37.	4.1	34
275	Microtherm: a program for thermal modelling of microstructures. Sensors and Actuators A: Physical, 1995, 47, 637-639.	4.1	4
276	Silicon nitride membrane sensors with monocrystalline transducers. Sensors and Actuators A: Physical, 1995, 51, 71-75.	4.1	13
277	Influence of rapid thermal oxidation on differently prepared porous silicon. Thin Solid Films, 1995, 255, 224-227.	1.8	11
278	Porous silicon: A novel material for microsystems. Sensors and Actuators A: Physical, 1995, 51, 31-36.	4.1	69
279	Anisotropic etching for optical gratings. Sensors and Actuators A: Physical, 1995, 51, 77-80.	4.1	11
280	Electroluminescence from porous silicon after metal deposition into the pores. Thin Solid Films, 1995, 255, 49-51.	1.8	49
281	Investigation of porous Si grains by optical spectroscopy. Thin Solid Films, 1995, 255, 119-122.	1.8	7
282	Micromachining applications of porous silicon. Thin Solid Films, 1995, 255, 52-58.	1.8	176
283	Ultrafast absorption in freeâ€standing porous silicon films. Applied Physics Letters, 1995, 67, 1966-1968.	3.3	11
284	Applications of porous silicon microstructuring. Journal of Micromechanics and Microengineering, 1995, 5, 175-176.	2.6	10
285	Enhanced Blue-Light Emission from an Indium-Treated Porous Silicon Device. Japanese Journal of Applied Physics, 1994, 33, 6075-6077.	1.5	44
286	Photoluminescence and Raman studies of porous silicon in polymethyl methacrylate. Applied Physics Letters, 1994, 64, 613-615.	3.3	24
287	A thin film bolometer using porous silicon technology. Sensors and Actuators A: Physical, 1994, 43, 185-187.	4.1	31
288	Application of porous silicon as a sacrificial layer. Sensors and Actuators A: Physical, 1994, 43, 239-242.	4.1	52

#	Article	IF	Citations
289	Light-emitting diodes in porous silicon. Sensors and Actuators A: Physical, 1994, 43, 153-156.	4.1	12
290	Luminescent Properties of Rapid Thermal Oxidized Porous Silicon. Materials Research Society Symposia Proceedings, 1994, 342, 85.	0.1	0
291	Fabrication and characterization of porous silicon light-emitting devices. , 1994, , .		O
292	Porous silicon light-emitting p-n junction. Journal of Luminescence, 1993, 57, 169-173.	3.1	14
293	Porous silicon electroluminescent devices. Journal of Luminescence, 1993, 57, 341-349.	3.1	69
294	Lumineszenz in porösem Silizium. Physik in Unserer Zeit, 1993, 24, 63-69.	0.0	3
295	A model for the electroluminescence of porous n-silicon. Journal of Luminescence, 1993, 57, 163-167.	3.1	15
296	Ultraviolet light from porous silicon by a microscopic discharge. Journal of Luminescence, 1993, 57, 185-189.	3.1	7
297	Lightâ€emitting porous silicon diode with an increased electroluminescence quantum efficiency. Applied Physics Letters, 1993, 62, 2700-2702.	3.3	164
298	Blue and green electroluminescence from a porous silicon device. IEEE Electron Device Letters, 1993, 14, 317-319.	3.9	53
299	Luminescent Porous Silicon Investigated by accelerator analytics. Materials Research Society Symposia Proceedings, 1992, 281, 531.	0.1	2
300	New Results on Electroluminescence from Porous Silicon. Materials Research Society Symposia Proceedings, 1992, 283, 343.	0.1	24
301	Spatially resolved Raman measurements at electroluminescent porousnâ€silicon. Journal of Applied Physics, 1992, 72, 5401-5408.	2.5	88
302	Electroluminescent performance of porous silicon. Thin Solid Films, 1992, 222, 196-199.	1.8	37
303	A simulation tool for mechanical sensor design. Sensors and Actuators A: Physical, 1992, 32, 521-524.	4.1	9
304	Absorbing layers for thermal infrared detectors. Sensors and Actuators A: Physical, 1992, 34, 243-248.	4.1	86
305	ONO structures investigated by SIMS, RBS, and NRA. Nuclear Instruments & Methods in Physics Research B, 1992, 64, 650-653.	1.4	4
306	Current-induced light emission from a porous silicon device. IEEE Electron Device Letters, 1991, 12, 691-692.	3.9	316

#	Article	IF	CITATIONS
307	Harmonic frequency generation by oscillating flames. Combustion and Flame, 1991, 83, 253-262.	5 . 2	14
308	Detection limits of surface contamination analysis by nitrogen-RBS. Surface and Interface Analysis, 1991, 17, 357-362.	1.8	3
309	Heat transport from a chip. IEEE Transactions on Electron Devices, 1990, 37, 958-963.	3.0	26
310	A thin-film bolometer for radiation thermometry at ambient temperature. Sensors and Actuators A: Physical, 1990, 22, 473-477.	4.1	20
311	Highly porous and electrically insulating films deposited by reactive physical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1990, 8, 4108-4110.	2.1	1
312	Suppression of combustion instabilities by active control. Journal of Propulsion and Power, 1989, 5, 14-20.	2.2	112
313	Cross-Correlation of Sound Pressure and Heat Release Rate for Oscillating Flames with Several Frequencies Excited. Combustion Science and Technology, 1987, 54, 399-406.	2.3	9
314	Active control of combustion instability. Combustion and Flame, 1987, 70, 281-289.	5.2	195
315	The orientation of water molecules in monoclinic Li2SO4·H2O investigated by light scattering. Journal of Physics and Chemistry of Solids, 1983, 44, 789-791.	4.0	5
316	Geometrical dispersion of dielectric and optic axes in a monoclinic crystal. Physical Review B, 1982, 26, 7119-7122.	3.2	9
317	Convection-based micromachined inclinometer using SOI technology. , 0, , .		16
318	Cross-coupling of the oscillation modes of vibratory gyroscopes. , 0, , .		23
319	Humidity measurement by dynamic dew-point detection., 0,,.		3
320	Fused Silica as Substrate Material for Surface Micromachined Capacitive Pressure Sensors Operable in Touch-Mode. , 0 , , .		3
321	RF smart-sensor for venous ulcer treatment. , 0, , .		2
322	Microlens array production in a microtechnological dry etch and reflow process for display applications. Journal of the European Optical Society-Rapid Publications, 0, 7, .	1.9	15
323	Online Process Monitoring and Control by Dielectric Sensors for a Composite Main Spar. Materials Science Forum, 0, 825-826, 936-943.	0.3	4
324	Sensor Sticker for Detection of Fungi Spore Contamination on Bananas. Advances in Science and Technology, 0, , .	0.2	0

#	Article	IF	CITATIONS
325	Sensor Integration in Castings Made of Aluminum - New Approaches for Direct Sensor Integration in Aluminum High Pressure Die Casting. Key Engineering Materials, 0, 742, 786-792.	0.4	7
326	Wireless Sensor Network for Structural Health Monitoring by Means of Lamb-Waves. , 0, , .		3
327	Linear Guide with Material Integrated Strain Gauges for Structural Health Monitoring. , 0, , .		0