Rogério Pezato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7091592/publications.pdf

Version: 2024-02-01

933447 996975 27 253 10 15 citations g-index h-index papers 27 27 27 348 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The expression of dendritic cell subsets in severe chronic rhinosinusitis with nasal polyps is altered. Immunobiology, 2014, 219, 729-736.	1.9	26
2	The close relationship between sudden loss of smell and COVID-19. Brazilian Journal of Otorhinolaryngology, 2020, 86, 632-638.	1.0	25
3	Immunoregulatory Effects of Bone Marrow-Derived Mesenchymal Stem Cells in the Nasal Polyp Microenvironment. Mediators of Inflammation, 2014, 2014, 1-11.	3.0	23
4	Systemic expression of inflammatory mediators in patients with chronic rhinosinusitis and nasal polyps with and without Aspirin Exacerbated Respiratory Disease. Cytokine, 2016, 77, 157-167.	3.2	22
5	Epithelium and stroma from nasal polyp mucosa exhibits inverse expression of TGF- $\langle i \rangle \hat{l}^2 \langle i \rangle \langle sub \rangle 1 \langle sub \rangle$ as compared with healthy nasal mucosa. Journal of Otolaryngology - Head and Neck Surgery, 2013, 42, 29.	1.9	20
6	Convergence of two major pathophysiologic mechanisms in nasal polyposis: Immune response to <i>Staphylococcus aureus</i> and airway remodeling. Journal of Otolaryngology - Head and Neck Surgery, 2013, 42, 27.	1.9	18
7	Why do we not find polyps in the lungs? Bronchial mucosa as a model in the treatment of polyposis. Medical Hypotheses, 2012, 78, 468-470.	1.5	15
8	Nasal Polyp-Derived Mesenchymal Stromal Cells Exhibit Lack of Immune-Associated Molecules and High Levels of Stem/Progenitor Cells Markers. Frontiers in Immunology, 2017, 8, 39.	4.8	15
9	Why we should avoid using inferior turbinate tissue as control to Nasal Polyposis studies. Acta Oto-Laryngologica, 2016, 136, 973-975.	0.9	13
10	Acute impact of continuous positive airway pressure on nasal patency. International Forum of Allergy and Rhinology, 2017, 7, 712-717.	2.8	11
11	Impact of SARS-CoV-2 on saliva: TNF-â², IL-6, IL-10, lactoferrin, lysozyme, IgG, IgA, and IgM. Journal of Oral Biosciences, 2022, 64, 108-113.	2.2	11
12	Nasal Polyposis: More than a Chronic Inflammatory Disorder—A Disease of Mechanical Dysfunction—The São Paulo Position. International Archives of Otorhinolaryngology, 2019, 23, 241-249.	0.8	9
13	What is the Impact of Positive Airway Pressure in Nasal Polyposis? An Experimental Study. International Archives of Otorhinolaryngology, 2019, 23, 147-151.	0.8	9
14	Fibrotic Tissue and Middle Turbinate Exhibit Similar Mechanical Properties. Is Fibrosis a Solution in Nasal Polyposis?. International Archives of Otorhinolaryngology, 2017, 21, 122-125.	0.8	8
15	BMP-7, MMP-9, and TGF- \hat{l}^2 tissue remodeling proteins and their correlations with interleukins 6 and 10 in chronic rhinosinusitis. European Archives of Oto-Rhino-Laryngology, 2021, 278, 4335-4343.	1.6	7
16	Deviated nose correction by using the spreader graft in the convex side. Brazilian Journal of Otorhinolaryngology, 2006, 72, 760-763.	1.0	5
17	Dendritic cell subset expression in severe chronic rhinosinusitis with nasal polyps. Current Opinion in Allergy and Clinical Immunology, 2017, 17, 1-4.	2.3	4
18	Alterations in cellular force parameters and cell projections in Nasal polyps-derived fibroblasts. Auris Nasus Larynx, 2020, 47, 98-104.	1.2	2

#	Article	IF	CITATIONS
19	Effect of topical corticosteroids on nasal patency after acute positive airway pressure exposure. Brazilian Journal of Otorhinolaryngology, 2021, 87, 326-332.	1.0	2
20	Three-wall decompression technique using transpalpebral and endonasal approach in patients with Graves' ophthalmopathy. Rhinology, 2003, 41, 231-4.	1.3	2
21	Bone: The final frontier for <i>Staphylococcus aureus</i> penetration in chronic rhinosinusitis. Journal of Otolaryngology - Head and Neck Surgery, 2013, 42, 45.	1.9	1
22	LTD4 and TGF- \hat{l}^21 Induce the Expression of Metalloproteinase-1 in Chronic Rhinosinusitis via a Cysteinyl Leukotriene Receptor 1-Related Mechanism. Sinusitis, 2016, 1, 65-75.	0.2	1
23	Montelukast Has no Impact on the Systemic Production of TGFβ-1 in Patients with Nasal Polyposis Associated with Aspirin Intolerance. International Archives of Otorhinolaryngology, 2021, 25, e88-e91.	0.8	1
24	CD133, a Progenitor Cell Marker, is Reduced in Nasal Polyposis and Showed Significant Correlations with TGF- \hat{l}^21 and IL-8. International Archives of Otorhinolaryngology, 2022, 26, e091-e096.	0.8	1
25	Structural changes in the extracellular matrix after cross-linking of nasal polyp tissue. Acta Otorhinolaryngologica Italica, 2020, 40, 426-434.	1.5	1
26	New Nasopharyngeal Flap for Posterior Skull-base Reconstruction: The Upper-Tongue Flap. International Archives of Otorhinolaryngology, 2022, 26, e467-e469.	0.8	1
27	Three-dimensional cell culture for the study of nasal polyps. Brazilian Journal of Otorhinolaryngology, 2021, , .	1.0	O