Tsyntsaru

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7091487/publications.pdf

Version: 2024-02-01

393982 360668 1,359 59 19 35 h-index citations g-index papers 60 60 60 976 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The optimized electrochemical deposition of bismuth-bismuth telluride layered crystal structures. IOP Conference Series: Materials Science and Engineering, 2021, 1140, 012016.	0.3	1
2	The Influence of Sodium Tungstate Concentration on the Electrode Reactions at Iron–Tungsten Alloy Electrodeposition. Coatings, 2021, 11, 981.	1.2	4
3	Magnetic state instability of disordered electrodeposited nanogranular Fe films. Journal of Magnetism and Magnetic Materials, 2021, 540, 168433.	1.0	3
4	Electrochemistry of bismuth interlayers in (Bi2)m(Bi2Te3)n superlattice. Journal of Solid State Electrochemistry, 2021, 25, 2807-2819.	1.2	0
5	Improved Photocatalytic Water Splitting Activity of Highly Porous WO3 Photoanodes by Electrochemical H+ Intercalation. Frontiers in Chemical Engineering, 2021, 3, .	1.3	7
6	Pulse electrodeposited bismuth-tellurium superlattices with controllable bismuth content. Journal of Power Sources, 2020, 450, 227605.	4.0	7
7	The Characterisation of Electrodeposited MoS2 Thin Films on a Foam-Based Electrode for Hydrogen Evolution. Catalysts, 2020, 10, 1182.	1.6	7
8	Metal Foam Electrode as a Cathode for Copper Electrowinning. Coatings, 2020, 10, 822.	1.2	13
9	XPS studies on theÂMo oxide-based coatings electrodeposited from highly saturated acetate bath. Chemija, 2020, 31, .	0.1	16
10	Improvement in the Wear Resistance under Dry Friction of Electrodeposited Fe-W Coatings through Heat Treatments. Coatings, 2019, 9, 66.	1.2	13
11	Modified Electrodeposited Cobalt Foam Coatings as Sensors for Detection of Free Chlorine in Water. Coatings, 2019, 9, 306.	1.2	4
12	Electrodeposited tungsten-rich Ni-W, Co-W and Fe-W cathodes for efficient hydrogen evolution in alkaline medium. Electrochimica Acta, 2019, 318, 597-606.	2.6	26
13	Insights into electrodeposition and catalytic activity of MoS2 for hydrogen evolution reaction electrocatalysis. Electrochimica Acta, 2019, 317, 427-436.	2.6	16
14	Nanocrystalline Electrodeposited Fe-W/Al2O3 Composites: Effect of Alumina Sub-microparticles on the Mechanical, Tribological, and Corrosion Properties. Frontiers in Chemistry, 2019, 7, 241.	1.8	7
15	The role of glycine in the iron-phosphorous alloy electrodeposition. Electrochimica Acta, 2019, 309, 450-459.	2.6	10
16	Design of Highly Active Electrodes for Hydrogen Evolution Reaction Based on Mo-Rich Alloys Electrodeposited from Ammonium Acetate Bath. Coatings, 2019, 9, 85.	1.2	12
17	Electrodeposition and corrosion behaviour of nanocrystalline Fe–P coatings. Transactions of the Institute of Metal Finishing, 2019, 97, 89-94.	0.6	10
18	Electrodeposition of Nanocrystalline Fe-P Coatings: Influence of Bath Temperature and Glycine Concentration on Structure, Mechanical and Corrosion Behavior. Coatings, 2019, 9, 189.	1.2	9

#	Article	IF	Citations
19	Leveling Power of Co-W and Fe-W Electrodeposited Coatings. Key Engineering Materials, 2019, 813, 248-253.	0.4	5
20	In-depth characterization of as-deposited and annealed Fe-W coatings electrodeposited from glycolate-citrate plating bath. Electrochimica Acta, 2018, 261, 167-177.	2.6	19
21	Mapping of magnetic and mechanical properties of Fe-W alloys electrodeposited from Fe(III)-based glycolate-citrate bath. Materials and Design, 2018, 139, 429-438.	3.3	42
22	Enhanced mechanical properties and microstructural modifications in electrodeposited Fe-W alloys through controlled heat treatments. Surface and Coatings Technology, 2018, 350, 20-30.	2.2	16
23	WEAR RESISTANCE OF ELECTRODEPOSITED Fe-W ALLOY COATINGS UNDER DRY CONDITIONS AND IN THE PRESENCE OF RAPESEED OIL. Green Tribology, 2018, 1, 16-23.	1.2	5
24	Synthesis, electrochemical impedance spectroscopy study and photoelectrochemical behaviour of as-deposited and annealed WO 3 films. Electrochimica Acta, 2017, 225, 29-38.	2.6	17
25	Fe (III)-Based Ammonia-Free Bath for Electrodeposition of Fe-W Alloys. Journal of the Electrochemical Society, 2017, 164, D590-D596.	1.3	38
26	Electrochemical co-deposition of tungsten with cobalt and copper: Peculiarities of binary and ternary alloys coatings formation. Surface and Coatings Technology, 2016, 307, 1341-1349.	2.2	13
27	The Study of Thin Films by Electrochemical Impedance Spectroscopy. Nanoscience and Technology, 2016, , 3-42.	1.5	73
28	Electrodeposition of cobalt–tungsten alloys and their application for surface engineering. Russian Journal of Electrochemistry, 2016, 52, 1041-1047.	0.3	16
29	Electrodeposited Co-W alloys and their prospects as effective anode for methanol oxidation in acidic media. Surface and Coatings Technology, 2016, 307, 1322-1328.	2.2	19
30	Electrodeposition and corrosion behaviour of nanostructured cobalt–tungsten alloys coatings. Transactions of the Institute of Metal Finishing, 2016, 94, 313-321.	0.6	15
31	Toward uniform electrodeposition of magnetic Co-W mesowires arrays: direct versus pulse current deposition. Electrochimica Acta, 2016, 188, 589-601.	2.6	22
32	Removal of Barrier Oxide in the Anodized Aluminum Oxide Nanotemplates. IFMBE Proceedings, 2016, , 123-126.	0.2	0
33	Size effect of microhardness of nanocrystalline Co-W coatings produced from citrate and gluconate solutions. Surface Engineering and Applied Electrochemistry, 2015, 51, 228-234.	0.3	22
34	Effect of Bulk Current Density on Tribological Properties of Fe-W, Co-W and Ni-W Coatings., 2015,,.		4
35	Tribological and Corrosion Properties of Iron-Based Alloys. , 2015, , .		9
36	Tribological Behaviour of Co-W Under Dry and Lubricanting Conditions. , 2015, , .		1

#	Article	IF	CITATIONS
37	Mechanical and frictional behaviour of nano-porous anodised aluminium. Materials Chemistry and Physics, 2014, 148, 887-895.	2.0	38
38	Co-W nanocrystalline electrodeposits as barrier for interconnects. Journal of Solid State Electrochemistry, 2014, 18, 3057-3064.	1.2	24
39	Anodic Titanium Oxide Films: Photoelectrochemical and Tribocorrosion Behavior. Journal of Nanoelectronics and Optoelectronics, 2014, 9, 265-270.	0.1	1
40	Structural, magnetic, and mechanical properties of electrodeposited cobalt–tungsten alloys: Intrinsic and extrinsic interdependencies. Electrochimica Acta, 2013, 104, 94-103.	2.6	81
41	Surface Wettability of Macroporous Anodized Aluminum Oxide. ACS Applied Materials & Samp; Interfaces, 2013, 5, 3224-3233.	4.0	138
42	Cu/Co-W nanolayers electrodeposited from single bath and investigations of their nanohardness. Surface Engineering and Applied Electrochemistry, 2012, 48, 418-425.	0.3	1
43	Modern trends in tungsten alloys electrodeposition with iron group metals. Surface Engineering and Applied Electrochemistry, 2012, 48, 491-520.	0.3	164
44	The effect of electrodeposition conditions and post-annealing on nanostructure of Co–W coatings. Surface and Coatings Technology, 2012, 206, 4262-4269.	2.2	56
45	The effect of dissolved oxygen on the rate of pulsed electrodeposition of copper and bismuth nanowires under the conditions of template synthesis. Russian Journal of Electrochemistry, 2011, 47, 357-360.	0.3	7
46	Electrodeposition of nanocrystalline Co-W coatings from citrate electrolytes under conditions of controlled hydrodynamic: II. The electrodeposition rate and composition of the coatings. Surface Engineering and Applied Electrochemistry, 2010, 46, 91-99.	0.3	11
47	Electrodeposition of nanocrystalline Co-W coatings from citrate electrolytes under controlled hydrodynamic conditions part 3: The micro- and macrodistribution of the deposition rates, the structure, and the mechanical properties. Surface Engineering and Applied Electrochemistry, 2010, 46, 206-214.	0.3	15
48	Electrodeposition of CoMo and CoMoP alloys from the weakly acidic solutions. Surface Engineering and Applied Electrochemistry, 2010, 46, 406-415.	0.3	23
49	Effect of a multilayer structure and lubrication on the tribological properties of coatings of Fe-W alloys. Surface Engineering and Applied Electrochemistry, 2010, 46, 538-546.	0.3	14
50	The role of mass transfer in the formation of the composition and structure of CoW coatings electrodeposited from citrate solutions. Surface Engineering and Applied Electrochemistry, 2010, 46, 570-578.	0.3	29
51	Iron–tungsten alloys electrodeposited under direct current from citrate–ammonia plating baths. Surface and Coatings Technology, 2009, 203, 3136-3141.	2.2	56
52	Tribological and corrosive characteristics of electrochemical coatings based on cobalt and iron superalloys. Powder Metallurgy and Metal Ceramics, 2009, 48, 419-428.	0.4	73
53	Influence of long-term operation of electrolytes on the composition, morphology, and mechanical properties of surfaces produced at deposition of Co-W coatings from citrate solutions. Surface Engineering and Applied Electrochemistry, 2009, 45, 1-12.	0.3	11
54	Micromechanical and tribological properties of nanocrystalline coatings of iron-tungsten alloys electrodeposited from citrate-ammonia solutions. Russian Journal of Electrochemistry, 2009, 45, 895-901.	0.3	27

TSYNTSARU

# /	Article	IF	CITATIONS
55 	Effect of the electrodeposition conditions on the morphology, composition and physicomechanical properties of Co-Mo-P alloys. Surface Engineering and Applied Electrochemistry, 2008, 44, 428-435.	0.3	5
56 	Tribological behaviour of electrodeposited cobalt–tungsten coatings: dependence on current parameters. Transactions of the Institute of Metal Finishing, 2008, 86, 301-307.	0.6	45
57	Composition, structure, and corrosion properties of coatings of Co-W alloys electrodeposited under direct current. Surface Engineering and Applied Electrochemistry, 2007, 43, 312-317.	0.3	33
58 J	Formal Bleaching Kinetics of Acid Blue 80 in Weakly Acidic, Neutral, and Basic Aqueous Media. Russian Journal of General Chemistry, 2004, 74, 376-378.	0.3	2
59 I	EVALUATION OF CORROSION AND TRIBOLOGICAL BEHAVIOR OF ELECTRODEPOSITED TUNGSTEN ALLOYS. , 0, ,		2