Thimios A Mitsiadis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7091371/publications.pdf

Version: 2024-02-01

143 6,967 47
papers citations h-ind

47 76
h-index g-index

149 7047

71685

149 149 docs citations

149 times ranked 7047 citing authors

#	Article	IF	Citations
1	Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis and Rheumatism, 2006, 54, 1209-1221.	6.7	377
2	Human Dentin Production in Vitro. Experimental Cell Research, 2000, 258, 33-41.	2.6	239
3	Stem cell niches in mammals. Experimental Cell Research, 2007, 313, 3377-3385.	2.6	195
4	Expression pattern of Notch1, 2 and 3 and Jagged1 and 2 in lymphoid and stromal thymus components: distinct ligand–receptor interactions in intrathymic T cell development. International Immunology, 1999, 11, 1017-1025.	4.0	180
5	Human deltex is a conserved regulator of Notch signalling. Nature Genetics, 1998, 19, 74-78.	21.4	179
6	Nestin Expression in Embryonic and Adult Human Teeth under Normal and Pathological Conditions. American Journal of Pathology, 2000, 157, 287-295.	3.8	177
7	Expression of Notch $1,2$ and 3 is regulated by epithelial-mesenchymal interactions and retinoic acid in the developing mouse tooth and associated with determination of ameloblast cell fate Journal of Cell Biology, 1995, 130, 407-418.	5.2	170
8	Human Ligands of the Notch Receptor. American Journal of Pathology, 1999, 154, 785-794.	3.8	170
9	Stem cells for tooth engineering. , 2008, 16, 1-9.		154
10	MouseOtlx2/RIEGExpression in the Odontogenic Epithelium Precedes Tooth Initiation and Requires Mesenchyme-Derived Signals for Its Maintenance. Developmental Biology, 1997, 189, 275-284.	2.0	146
11	Midkine (MK), a heparin-binding growth/differentiation factor, is regulated by retinoic acid and epithelial-mesenchymal interactions in the developing mouse tooth, and affects cell proliferation and morphogenesis Journal of Cell Biology, 1995, 129, 267-281.	5.2	142
12	Retinoid X receptor heterodimerization and developmental expression distinguish the orphan nuclear receptors NGFI-B, Nurr1, and Nor1. Molecular Endocrinology, 1996, 10, 1656-1666.	3.7	142
13	Activation of WNT and BMP signaling in adult human articular cartilage following mechanical injury. Arthritis Research and Therapy, 2006, 8, R139.	3.5	139
14	A biomarkerâ€based mathematical model to predict boneâ€forming potency of human synovial and periosteal mesenchymal stem cells. Arthritis and Rheumatism, 2008, 58, 240-250.	6.7	116
15	Cell fate determination during tooth development and regeneration. Birth Defects Research Part C: Embryo Today Reviews, 2009, 87, 199-211.	3.6	116
16	Parallels between Tooth Development and Repair: Conserved Molecular Mechanisms following Carious and Dental Injury. Journal of Dental Research, 2004, 83, 896-902.	5.2	114
17	Development of teeth in chick embryos after mouse neural crest transplantations. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6541-6545.	7.1	108
18	Expression of the Notch 3 intracellular domain in mouse central nervous system progenitor cells is lethal and leads to disturbed neural tube development. Mechanisms of Development, 1996, 59, 177-190.	1.7	104

#	Article	IF	CITATIONS
19	Physiology, Pathology and Regeneration of Salivary Glands. Cells, 2019, 8, 976.	4.1	104
20	Dental Pulp Stem Cells, Niches, and Notch Signaling in Tooth Injury. Advances in Dental Research, 2011, 23, 275-279.	3.6	103
21	Delta–Notch Signaling in Odontogenesis: Correlation with Cytodifferentiation and Evidence for Feedback Regulation. Developmental Biology, 1998, 204, 420-431.	2.0	101
22	Explantâ€derived human dental pulp stem cells enhance differentiation and proliferation potentials. Journal of Cellular and Molecular Medicine, 2010, 14, 1635-1644.	3.6	99
23	Bone morphogenetic protein-7 release from endogenous neural precursor cells suppresses the tumourigenicity of stem-like glioblastoma cells. Brain, 2010, 133, 1961-1972.	7.6	90
24	Role of Islet1 in the patterning of murine dentition. Development (Cambridge), 2003, 130, 4451-4460.	2.5	87
25	Dental lamina as source of odontogenic stem cells: evolutionary origins and developmental control of tooth generation in gnathostomes. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2009, 312B, 260-280.	1.3	87
26	Reactivation of Delta–Notch Signaling after Injury: Complementary Expression Patterns of Ligand and Receptor in Dental Pulp. Experimental Cell Research, 1999, 246, 312-318.	2.6	83
27	Distinct mesenchymal progenitor cell subsets in the adult human synovium. Rheumatology, 2009, 48, 1057-1064.	1.9	77
28	Bmp7 Regulates the Survival, Proliferation, and Neurogenic Properties of Neural Progenitor Cells during Corticogenesis in the Mouse. PLoS ONE, 2012, 7, e34088.	2.5	73
29	Immunohistochemical localization of nerve growth factor (NGF) and NGF receptor (NGF-R) in the developing first molar tooth of the rat. Differentiation, 1992, 49, 47-61.	1.9	72
30	Deletion of BMP7 affects the development of bones, teeth, and other ectodermal appendages of the orofacial complex. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2009, 312B, 361-374.	1.3	70
31	Future dentistry: cell therapy meets tooth and periodontal repair and regeneration. Journal of Cellular and Molecular Medicine, 2011, 15, 1054-1065.	3.6	70
32	BMPs and FGFs target Notch signalling via jagged 2 to regulate tooth morphogenesis and cytodifferentiation. Development (Cambridge), 2010, 137, 3025-3035.	2.5	68
33	A large pool of actively cycling progenitors orchestrates self-renewal and injury repair of an ectodermal appendage. Nature Cell Biology, 2019, 21, 1102-1112.	10.3	67
34	How do genes make teeth to order through development?. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2006, 306B, 177-182.	1.3	66
35	Apoptosis in developmental and repair-related human tooth remodeling: A view from the inside. Experimental Cell Research, 2008, 314, 869-877.	2.6	66
36	Influence of resinous monomers on the differentiation vitro of human pulp cells into odontoblasts. Journal of Biomedical Materials Research Part B, 2002, 63, 418-423.	3.1	64

#	Article	IF	Citations
37	A single-cell atlas of human teeth. IScience, 2021, 24, 102405.	4.1	63
38	Molecular Aspects of Tooth Pathogenesis and Repair: in vivo and in vitro Models. Advances in Dental Research, 2001, 15, 59-62.	3.6	60
39	Coexpression of Notch3 and Rgs5 in the pericyte-vascular smooth muscle cell axis in response to pulp injury. International Journal of Developmental Biology, 2007, 51, 715-721.	0.6	60
40	Role of the Notch signalling pathway in tooth morphogenesis. Archives of Oral Biology, 2005, 50, 137-140.	1.8	56
41	Stem cell-based approaches in dentistry. , 2015, 30, 248-257.		56
42	Deletion of the Pitx1 genomic locus affects mandibular tooth morphogenesis and expression of the Barx1 and Tbx1 genes. Developmental Biology, 2008, 313, 887-896.	2.0	55
43	Enamel-free teeth: Tbx1 deletion affects amelogenesis in rodent incisors. Developmental Biology, 2009, 328, 493-505.	2.0	54
44	Nanodentistry: combining nanostructured materials and stem cells for dental tissue regeneration. Nanomedicine, 2012, 7, 1743-1753.	3.3	54
45	Cancer Stem Cells, Quo Vadis? The Notch Signaling Pathway in Tumor Initiation and Progression. Cells, 2020, 9, 1879.	4.1	53
46	E-cadherin regulates the behavior and fate of epithelial stem cells and their progeny in the mouse incisor. Developmental Biology, 2012, 366, 357-366.	2.0	52
47	Human Dental Pulp Stem Cells Hook into Biocoral Scaffold Forming an Engineered Biocomplex. PLoS ONE, 2011, 6, e18721.	2.5	51
48	E- and N-Cadherin Distribution in Developing and Functional Human Teeth under Normal and Pathological Conditions. American Journal of Pathology, 2002, 160, 2123-2133.	3.8	50
49	A cytoplasmic role of Wnt/ \hat{l}^2 -catenin transcriptional cofactors Bcl9, Bcl9l, and Pygopus in tooth enamel formation. Science Signaling, 2017, 10, .	3.6	50
50	Patterns of nerve growth factor (NGF), proNGF, and p75 NGF receptor expression in the rat incisor: comparison with expression in the molar. Differentiation, 1993, 54, 161-175.	1.9	49
51	Contribution of the tooth bud mesenchyme to alveolar bone. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2009, 312B, 510-517.	1.3	49
52	Notch2 protein distribution in human teeth under normal and pathological conditions. Experimental Cell Research, 2003, 282, 101-109.	2.6	48
53	Neural crest cells and patterning of the mammalian dentition. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2006, 306B, 251-260.	1.3	47
54	A regulatory relationship between Tbx1 and FGF signaling during tooth morphogenesis and ameloblast lineage determination. Developmental Biology, 2008, 320, 39-48.	2.0	45

#	Article	IF	CITATIONS
55	Genetic basis for tooth malformations: from mice to men and back again. Clinical Genetics, 2011, 80, 319-329.	2.0	45
56	Multifactorial Contribution of Notch Signaling in Head and Neck Squamous Cell Carcinoma. International Journal of Molecular Sciences, 2019, 20, 1520.	4.1	44
57	Mouse Notch 3 Expression in the Pre- and Postnatal Brain: Relationship to the Stroke and Dementia Syndrome CADASIL. Experimental Cell Research, 2002, 278, 31-44.	2.6	43
58	Stem Cell Fate Determination during Development and Regeneration of Ectodermal Organs. Frontiers in Physiology, 2012, 3, 107.	2.8	43
59	Influence of the Mechanical Environment on the Engineering of Mineralised Tissues Using Human Dental Pulp Stem Cells and Silk Fibroin Scaffolds. PLoS ONE, 2014, 9, e111010.	2.5	43
60	A comparative in vitro study of the osteogenic and adipogenic potential of human dental pulp stem cells, gingival fibroblasts and foreskin fibroblasts. Scientific Reports, 2019, 9, 1761.	3.3	43
61	Expression of the transcription factors <i>Otlx2, Barx1</i> and <i>Sox9</i> during mouse odontogenesis. European Journal of Oral Sciences, 1998, 106, 112-116.	1.5	40
62	Waking-up the sleeping beauty: recovery of the ancestral bird odontogenic program. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2006, 306B, 227-233.	1.3	40
63	Microfluidics co-culture systems for studying tooth innervation. Frontiers in Physiology, 2014, 5, 326.	2.8	40
64	Roles of innervation in developing and regenerating orofacial tissues. Cellular and Molecular Life Sciences, 2014, 71, 2241-2251.	5.4	38
65	Nerve growth factor signalling in pathology and regeneration of human teeth. Scientific Reports, 2017, 7, 1327.	3.3	38
66	The Etiology of Cleft Palate Formation in BMP7-Deficient Mice. PLoS ONE, 2013, 8, e59463.	2.5	37
67	Innovative Dental Stem Cell-Based Research Approaches: The Future of Dentistry. Stem Cells International, 2016, 2016, 1-7.	2.5	35
68	Human Dental Pulp Stem Cells and Gingival Fibroblasts Seeded into Silk Fibroin Scaffolds Have the Same Ability in Attracting Vessels. Frontiers in Physiology, 2016, 7, 140.	2.8	35
69	The effect of extracellular acidosis on the behaviour of mesenchymal stem cells in vitro. , 2017, 33, 252-267.		35
70	The effects of ageing on dental pulp stem cells, the tooth longevity elixir., 2019, 37, 175-185.		35
71	Amelogenin in cranioâ€facial development: the tooth as a model to study the role of amelogenin during embryogenesis. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2009, 312B, 445-457.	1.3	34
72	Mesenchymal Remodeling during Palatal Shelf Elevation Revealed by Extracellular Matrix and F-Actin Expression Patterns. Frontiers in Physiology, 2016, 7, 392.	2.8	34

#	Article	IF	Citations
73	Investigation of orofacial stem cell niches and their innervation through microfluidic devices. , 2015, 29, 213-223.		34
74	Tbx1 is expressed at multiple sites of epithelial-mesenchymal interaction during early development of the facial complex. International Journal of Developmental Biology, 2006, 50, 504-10.	0.6	33
75	Sox2 acts as a rheostat of epithelial to mesenchymal transition during neural crest development. Frontiers in Physiology, 2014, 5, 345.	2.8	33
76	Human dental pulp stem cells exhibit enhanced properties in comparison to human bone marrow stem cells on neurites outgrowth. FASEB Journal, 2020, 34, 5499-5511.	0.5	33
77	Regenerated teeth: the future of tooth replacement?. Regenerative Medicine, 2011, 6, 135-139.	1.7	29
78	In Vivo and In Vitro Expression of Connexin 43 in Human Teeth. Connective Tissue Research, 2002, 43, 232-237.	2.3	28
79	Flexibility of Neural Stem Cells. Frontiers in Physiology, 2011, 2, 16.	2.8	28
80	Polymerized bonding agents and the differentiation in vitro of human pulp cells into odontoblast-like cells. Dental Materials, 2005, 21, 156-163.	3.5	27
81	Noggin null allele mice exhibit a microform of holoprosencephaly. Human Molecular Genetics, 2011, 20, 4005-4015.	2.9	26
82	Amniotic Fluid-Derived Mesenchymal Stem Cells Lead to Bone Differentiation when Cocultured with Dental Pulp Stem Cells. Tissue Engineering - Part A, 2011, 17, 645-653.	3.1	25
83	Correlation of asymmetric Notch2 expression and mouse incisor rotation. Mechanisms of Development, 2000, 91, 379-382.	1.7	22
84	Expression of Nerve Growth Factor (NGF), TrkA, and p75NTR in Developing Human Fetal Teeth. Frontiers in Physiology, 2016, 7, 338.	2.8	22
85	Modern Trends in Dental Medicine: An Update for Internists. American Journal of Medicine, 2018, 131, 1425-1430.	1.5	22
86	Fighting for territories: time-lapse analysis of dental pulp and dental follicle stem cells in co-culture reveals specific migratory capabilities., 2012, 24, 426-440.		22
87	NANOG priming before full reprogramming may generate germ cell tumours. , 2011, 22, 258-274.		21
88	Regenerated teeth: the future of tooth replacement. An update. Regenerative Medicine, 2015, 10, 5-8.	1.7	20
89	Monitoring Notch Signaling-Associated Activation of Stem Cell Niches within Injured Dental Pulp. Frontiers in Physiology, 2017, 8, 372.	2.8	20
90	Novel Biological and Technological Platforms for Dental Clinical Use. Frontiers in Physiology, 2018, 9, 1102.	2.8	20

#	Article	IF	Citations
91	The large functional spectrum of the heparin-binding cytokines MK and HB-GAM in continuously growing organs: The rodent incisor as a model. Developmental Biology, 2008, 320, 256-266.	2.0	19
92	NZ-GMP Approved Serum Improve hDPSC Osteogenic Commitment and Increase Angiogenic Factor Expression. Frontiers in Physiology, 2016, 7, 354.	2.8	19
93	Molecular and Cellular Modelling of Salivary Gland Tumors Open New Landscapes in Diagnosis and Treatment. Cancers, 2020, 12, 3107.	3.7	19
94	Dynamic expression patterns of the new protocadherin families CNRs and Pcdh-γ during mouse odontogenesis: comparison with reelin expression. Mechanisms of Development, 2001, 106, 181-184.	1.7	17
95	A Bio-Realistic Finite Element Model to Evaluate the Effect of Masticatory Loadings on Mouse Mandible-Related Tissues. Frontiers in Physiology, 2017, 8, 273.	2.8	17
96	The genetic basis of craniofacial and dental abnormalities. Schweizerische Monatsschrift Fýr Zahnmedizin = Revue Mensuelle Suisse D'odonto-stomatologie = Rivista Mensile Svizzera Di Odontologia E Stomatologia, 2011, 121, 636-46.	0.3	17
97	Expression of Deltex1 during mouse embryogenesis: comparison with Notch1, 2 and 3 expression. Mechanisms of Development, 2001, 109, 399-403.	1.7	16
98	Distribution of the amelogenin protein in developing, injured and carious human teeth. Frontiers in Physiology, 2014, 5, 477.	2.8	15
99	Generation of Spheres from Dental Epithelial Stem Cells. Frontiers in Physiology, 2017, 8, 7.	2.8	15
100	Notch in Head and Neck Cancer. Advances in Experimental Medicine and Biology, 2021, 1287, 81-103.	1.6	15
101	Cloning, chromosomal organization and expression analysis of Neurl, the mouse homolog of Drosophila melanogaster neuralized gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1574, 375-382.	2.4	14
102	Three-Dimensional Imaging of the Developing Vasculature within Stem Cell-Seeded Scaffolds Cultured in ovo. Frontiers in Physiology, 2016, 7, 146.	2.8	14
103	Notch Signaling in the Dynamics of Perivascular Stem Cells and their Niches. Stem Cells Translational Medicine, 2021, 10, 1433-1445.	3.3	14
104	Dynamic Lunatic fringe expression is correlated with boundaries formation in developing mouse teeth. Mechanisms of Development, 2000, 91, 399-402.	1.7	12
105	EMMPRIN/CD147 deficiency disturbs ameloblast–odontoblast cross-talk and delays enamel mineralization. Bone, 2014, 66, 256-266.	2.9	12
106	Ameloblastomas Exhibit Stem Cell Potential, Possess Neurotrophic Properties, and Establish Connections with Trigeminal Neurons. Cells, 2020, 9, 644.	4.1	12
107	New Scenarios in Pharmacological Treatments of Head and Neck Squamous Cell Carcinomas. Cancers, $2021, 13, 5515.$	3.7	12
108	Distribution of syndecan-1 protein in developing mouse teeth. Frontiers in Physiology, 2015, 5, 518.	2.8	11

#	Article	IF	Citations
109	Dental Epithelial Stem Cells as a Source for Mammary Gland Regeneration and Milk Producing Cells In Vivo. Cells, 2019, 8, 1302.	4.1	11
110	Three-Dimensional Imaging and Gene Expression Analysis Upon Enzymatic Isolation of the Tongue Epithelium. Frontiers in Physiology, 2020, 11, 825.	2.8	11
111	Bioengineered tooth emulation systems for regenerative and pharmacological purposes. , 2021, 41, 502-516.		11
112	lodixanol as a Contrast Agent in a Fibrin Hydrogel for Endodontic Applications. Frontiers in Physiology, 2017, 8, 152.	2.8	10
113	Tp63-expressing adult epithelial stem cells cross lineages boundaries revealing latent hairy skin competence. Nature Communications, 2020, 11, 5645.	12.8	9
114	Distinct Expression Patterns of Cxcl12 in Mesenchymal Stem Cell Niches of Intact and Injured Rodent Teeth. International Journal of Molecular Sciences, 2021, 22, 3024.	4.1	8
115	In Vivo and In Vitro Expression of Connexin 43 in Human Teeth. Connective Tissue Research, 2002, 43, 232-237.	2.3	8
116	Odyssey of human dental pulp stem cells and their remarkable ability to survive in extremely adverse conditions. Frontiers in Physiology, 2015, 6, 99.	2.8	7
117	Exploiting teeth as a model to study basic features of signaling pathways. Biochemical Society Transactions, 2020, 48, 2729-2742.	3.4	7
118	Three-Dimensional Culture Systems for Dissecting Notch Signalling in Health and Disease. International Journal of Molecular Sciences, 2021, 22, 12473.	4.1	7
119	Expression of Trk Receptors during Cartilage Differentiation. Annals of the New York Academy of Sciences, 1996, 785, 298-300.	3.8	6
120	Everything is on the Head. Frontiers in Physiology, 2011, 2, 2.	2.8	6
121	Analysis of Developing Tooth Germ Innervation Using Microfluidic Co-culture Devices. Journal of Visualized Experiments, 2015, , e53114.	0.3	6
122	In vivo administration of dental epithelial stem cells at the apical end of the mouse incisor. Frontiers in Physiology, 2015, 6, 112.	2.8	6
123	Editorial: A New Era in Dentistry: Stem Cell-Based Approaches for Tooth and Periodontal Tissue Regeneration. Frontiers in Physiology, 2016, 7, 357.	2.8	5
124	Early Determination of the Periodontal Domain by the Wnt-Antagonist Frzb/Sfrp3. Frontiers in Physiology, 2017, 8, 936.	2.8	5
125	BEN/DM-GRASP/SC1 expression during mouse facial development: differential expression and regulation in molars and incisors. Gene Expression Patterns, 2003, 3, 255-259.	0.8	3
126	Editorial: Advances in Craniofacial and Dental Materials Through Nanotechnology and Tissue Engineering. Frontiers in Physiology, 2019, 10, 303.	2.8	3

#	Article	IF	Citations
127	The Versatile Roles of Nerve Growth Factor in Neuronal Attraction, Odontoblast Differentiation, and Mineral Deposition in Human Teeth. Advances in Experimental Medicine and Biology, 2021, 1331, 65-75.	1.6	3
128	Analysis of Tooth Innervation in Microfluidic Coculture Devices. Methods in Molecular Biology, 2020, 2155, 99-106.	0.9	3
129	Isolation of dental pulp and periodontal cells from human teeth for single-cell RNA sequencing. STAR Protocols, 2021, 2, 100953.	1.2	3
130	Regenerative Dentistry: Stem Cells Meet Nanotechnology. , 2014, , 255-287.		2
131	Angiogenesis within Stem Cell–Seeded Silk Scaffolds Cultured on the Chorioallantoic Membrane and Visualized by 3D Imaging. Current Protocols in Stem Cell Biology, 2017, 41, 1F.19.1-1F.19.9.	3.0	2
132	In Vitro Studies on Odontogenic Tumors. Methods in Molecular Biology, 2012, 887, 167-177.	0.9	2
133	Linking dental pathologies and cancer via Wnt signalling. Oncotarget, 2017, 8, 99213-99214.	1.8	2
134	Dental Stem Cells for Tooth Regeneration. Pancreatic Islet Biology, 2016, , 187-202.	0.3	1
135	Biomedical Applications of Dental and Oral-Derived Stem Cells. Stem Cells International, 2017, 2017, 1-2.	2.5	1
136	Emerging Trends and Promises in Orofacial Cancers. Frontiers in Physiology, 2019, 10, 679.	2.8	1
137	Tissue Recombination and Kidney Capsule Transplantation Assays for the Study of Epithelial-Mesenchymal Interactions. Methods in Molecular Biology, 2019, 1922, 49-55.	0.9	1
138	An interview with Professor Ed Kollar. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2009, 312B, 389-398.	1.3	0
139	Old concepts, current knowledge, new challenges. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2009, 312B, 247-248.	1.3	0
140	Development, Pathology and Regeneration of Dental and Orofacial Tissues: A Molecular Approach. Molecular Biology (Los Angeles, Calif), 2012, 02, .	0.0	0
141	ISDN2014_0036: REMOVED: Craniofacial development is fine tuned by Sox2. International Journal of Developmental Neuroscience, 2015, 47, 7-7.	1.6	0
142	Editorial: Signaling Pathways in Developing and Pathological Tissues and Organs of the Craniofacial Complex. Frontiers in Physiology, 2018, 9, 1015.	2.8	0
143	Promises in orofacial cancers. Frontiers in Physiology, 0, 10, .	2.8	0