Sudipto Pal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7091229/publications.pdf

Version: 2024-02-01

32	925	15	30
papers	citations	h-index	g-index
22	22	22	1.410
32	32	32	1419
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Silver-Functionalized Bacterial Cellulose as Antibacterial Membrane for Wound-Healing Applications. ACS Omega, 2017, 2, 3632-3639.	1.6	175
2	Photocatalytic degradation of ethylene on mesoporous TiO2/SiO2 nanocomposites: Effects on the ripening of mature green tomatoes. Biosystems Engineering, 2015, 132, 61-70.	1.9	92
3	Biphase TiO ₂ Microspheres with Enhanced Photocatalytic Activity. Industrial & Samp; Engineering Chemistry Research, 2014, 53, 7931-7938.	1.8	65
4	Nanocrystalline TiO2–diatomite composite catalysts: Effect of crystallization on the photocatalytic degradation of rhodamine B. Applied Catalysis A: General, 2014, 485, 157-162.	2.2	61
5	Photocatalytic Degradation of Tetracycline by ZnO/γ-Fe2O3 Paramagnetic Nanocomposite Material. Nanomaterials, 2020, 10, 1458.	1.9	56
6	A New Approach for the Synthesis of Auâ^'Ag Alloy Nanoparticle Incorporated SiO2 Films. Chemistry of Materials, 2005, 17, 6161-6166.	3.2	54
7	Limestones coated with photocatalytic TiO 2 to enhance building surface with self-cleaning and depolluting abilities. Journal of Cleaner Production, 2017, 165, 1036-1047.	4.6	49
8	A new non-destructive method for chemical analysis of particulate matter filters: The case of manganese air pollution in Vallecamonica (Italy). Talanta, 2011, 84, 192-198.	2.9	43
9	Reversible transformations of silver oxide and metallic silver nanoparticles inside SiO2 films. Materials Research Bulletin, 2009, 44, 355-359.	2.7	34
10	Using aggregates of gold nanorods in SER(R)S experiments: an empirical evaluation of some critical aspects. Nanotechnology, 2010, 21, 425701.	1.3	33
11	Spectrally selective absorber coating from transition metal complex for efficient photothermal conversion. Journal of Materials Science, 2013, 48, 8268-8276.	1.7	25
12	Enhanced Solar-Driven Applications of ZnO@Ag Patchy Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 27199-27206.	1.5	25
13	Oriented Au–Cu nanoalloy particle incorporated SiO2films using a new layer by layer deposition technique. Journal of Materials Chemistry, 2007, 17, 493-498.	6.7	23
14	Self-Cleaning Mineral Paint for Application in Architectural Heritage. Coatings, 2016, 6, 48.	1,2	23
15	SiO2 based nanocomposite for simultaneous magnetic removal and discrimination of small pollutants in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633, 127905.	2.3	18
16	Formation of Au–Pt bimetallic nanoparticles in a two-layer SiO2 films doped with Au and Pt, respectively, through interlayer diffusion. Physical Chemistry Chemical Physics, 2008, 10, 4062.	1.3	17
17	Ethylene photo-oxidation on copper phthalocyanine sensitized TiO 2 films under solar radiation. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 523-529.	2.0	14
18	Metal nanoparticle doped coloured coatings on glasses and plastics through tuning of surface plasmon band position. Bulletin of Materials Science, 2008, 31, 479-485.	0.8	13

#	Article	IF	CITATIONS
19	Celluloseâ€Based Substrate for SERSâ€Promoted Histamine Picomolar Detection in Beverages. ChemistrySelect, 2019, 4, 2968-2975.	0.7	12
20	Cu x Ni $1\hat{a}$ °'x alloy nanoparticles embedded SiO2 films: synthesis and structure. Journal of Nanoparticle Research, 2011, 13, 321-329.	0.8	10
21	Hybrid TiO2 @ phthalocyanine catalysts in photooxidation of 4-nitrophenol: Effect of the matrix and sensitizer type. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 387, 112124.	2.0	10
22	Diatomite/silver phosphate composite for efficient degradation of organic dyes under solar radiation. Bulletin of Materials Science, 2020, 43, 1.	0.8	10
23	Synthesis of Au–Ag Alloy Nanoparticles with Au/Ag Compositional Control in SiO2 Film Matrix. Journal of Nanoscience and Nanotechnology, 2007, 7, 1994-1999.	0.9	9
24	Cu–Au–Ag Alloy Nanoparticles Incorporated Silica Films Using a New Three-Layer Deposition Technique. Journal of Nanoscience and Nanotechnology, 2010, 10, 775-783.	0.9	9
25	Investigation of Photocatalysis by Mesoporous Titanium Dioxide Supported on Glass Fibers as an Integrated Technology for Water Remediation. Catalysts, 2022, 12, 41.	1.6	9
26	Au nanoparticles doped ZrTiO4 films and hydrogen gas induced Au-plasmon shifting. Journal of Materials Chemistry, 2010, 20, 9081.	6.7	8
27	Block Copolymer and Cellulose Templated Mesoporous TiO2-SiO2 Nanocomposite as Superior Photocatalyst. Catalysts, 2022, 12, 770.	1.6	7
28	Metal nanoparticle-doped coloured films on glass and polycarbonate substrates. Pramana - Journal of Physics, 2005, 65, 931-936.	0.9	6
29	Improved photoluminescence properties of sol-gel derived Er3+ doped silica films. Journal of Applied Physics, 2010, 108, 113116.	1.1	6
30	Coffee Grounds-Derived CNPs for Efficient Cr(VI) Water Remediation. Nanomaterials, 2021, 11, 1064.	1.9	4
31	Antibacterial Activity of In Situ Generated Silver Nanoparticles in Hybrid Silica Films. Photochem, 2022, 2, 479-488.	1.3	3
32	Au@MO2 (M= Ti, Zr, Si) Films by Ex Situ Incorporation Approach. Science of Advanced Materials, 2012, 4, 663-668.	0.1	2