Zhihua Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7091/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fabrication of Cu2ZnSnS4 screen printed layers for solar cells. Solar Energy Materials and Solar Cells, 2010, 94, 2042-2045.	3.0	200
2	Design of Hetero-Nanostructures on MoS ₂ Nanosheets To Boost NO ₂ Room-Temperature Sensing. ACS Applied Materials & Interfaces, 2018, 10, 22640-22649.	4.0	199
3	High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites. Nanoscale Research Letters, 2013, 8, 473.	3.1	155
4	Single-walled carbon nanotube/cobalt phthalocyanine derivative hybrid material: preparation, characterization and its gas sensing properties. Journal of Materials Chemistry, 2011, 21, 3779.	6.7	154
5	Biosynthesis and Antibacterial Activity of Silver Nanoparticles Using Yeast Extract as Reducing and Capping Agents. Nanoscale Research Letters, 2020, 15, 14.	3.1	121
6	Enhanced formaldehyde detection based on Ni doping of SnO 2 nanoparticles by one-step synthesis. Sensors and Actuators B: Chemical, 2018, 263, 120-128.	4.0	107
7	Construction of MoS2/SnO2 heterostructures for sensitive NO2 detection at room temperature. Applied Surface Science, 2019, 493, 613-619.	3.1	104
8	Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection. Nanotechnology, 2009, 20, 345502.	1.3	103
9	Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes. Nanoscale Research Letters, 2014, 9, 251.	3.1	98
10	Interface engineered WS2/ZnS heterostructures for sensitive and reversible NO2 room temperature sensing. Sensors and Actuators B: Chemical, 2019, 296, 126666.	4.0	98
11	Ultrasensitive room temperature NO2 sensors based on liquid phase exfoliated WSe2 nanosheets. Sensors and Actuators B: Chemical, 2019, 300, 127013.	4.0	93
12	Hydrothermal fabrication of porous MoS2 and its visible light photocatalytic properties. Materials Letters, 2014, 131, 122-124.	1.3	90
13	Controllable synthesis of heterostructured CuO–NiO nanotubes and their synergistic effect for glycol gas sensing. Sensors and Actuators B: Chemical, 2020, 304, 127347.	4.0	87
14	Two-dimensional Cd-doped porous Co3O4 nanosheets for enhanced room-temperature NO2 sensing performance. Sensors and Actuators B: Chemical, 2020, 305, 127393.	4.0	87
15	Sonochemical synthesis of hierarchical WO3 flower-like spheres for highly efficient triethylamine detection. Sensors and Actuators B: Chemical, 2020, 306, 127536.	4.0	75
16	Controllable synthesis of crescent-shaped porous NiO nanoplates for conductometric ethanol gas sensors. Sensors and Actuators B: Chemical, 2019, 296, 126642.	4.0	74
17	Broadband efficiency enhancement in quantum dot solar cells coupled with multispiked plasmonic nanostars. Nano Energy, 2015, 13, 827-835.	8.2	68
18	Glucose-assisted synthesis of hierarchical flower-like Co3O4 nanostructures assembled by porous nanosheets for enhanced acetone sensing. Sensors and Actuators B: Chemical, 2019, 288, 699-706.	4.0	66

Zніниа **Z**нои

#	Article	IF	CITATIONS
19	Fast and recoverable NO ₂ detection achieved by assembling ZnO on Ti ₃ C ₂ T _{<i>x</i>} MXene nanosheets under UV illumination at room temperature. Nanoscale, 2022, 14, 3441-3451.	2.8	65
20	Two-dimensional MoSe ₂ nanosheets via liquid-phase exfoliation for high-performance room temperature NO ₂ gas sensors. Nanotechnology, 2019, 30, 445503.	1.3	63
21	Strain-free ring-shaped nanostructures by droplet epitaxy for photovoltaic application. Applied Physics Letters, 2012, 101, 043904.	1.5	57
22	Glucose-assisted synthesis of hierarchical NiO-ZnO heterostructure with enhanced glycol gas sensing performance. Sensors and Actuators B: Chemical, 2021, 329, 129167.	4.0	56
23	Hierarchical WS ₂ –WO ₃ Nanohybrids with P–N Heterojunctions for NO ₂ Detection. ACS Applied Nano Materials, 2021, 4, 1626-1634.	2.4	56
24	Rapid large-scale preparation of ZnO nanowires for photocatalytic application. Nanoscale Research Letters, 2011, 6, 536.	3.1	54
25	Preparation of NiO two-dimensional grainy films and their high-performance gas sensors for ammonia detection. Nanoscale Research Letters, 2015, 10, 119.	3.1	54
26	Controlled growth of vertically aligned ultrathin In ₂ S ₃ nanosheet arrays for photoelectrochemical water splitting. Nanoscale, 2018, 10, 1153-1161.	2.8	54
27	Hierarchical CoNi2S4 nanosheet/nanotube array structure on carbon fiber cloth for high-performance hybrid supercapacitors. Electrochimica Acta, 2019, 305, 81-89.	2.6	54
28	A Novel Artificial Neuron-Like Gas Sensor Constructed from CuS Quantum Dots/Bi2S3 Nanosheets. Nano-Micro Letters, 2022, 14, 8.	14.4	53
29	Bi-metal organic framework nanosheets assembled on nickel wire films for volumetric-energy-dense supercapacitors. Journal of Power Sources, 2019, 423, 80-89.	4.0	50
30	Highly sensitive and recoverable room-temperature NO2 gas detection realized by 2D/0D MoS2/ZnS heterostructures with synergistic effects. Sensors and Actuators B: Chemical, 2021, 347, 130608.	4.0	50
31	Design of p–p heterojunctions based on CuO decorated WS ₂ nanosheets for sensitive NH ₃ gas sensing at room temperature. Nanotechnology, 2021, 32, 445502.	1.3	48
32	Study on cerium-doped nano-TiO2 coatings for corrosion protection of 316 L stainless steel. Nanoscale Research Letters, 2012, 7, 227.	3.1	47
33	Scalable synthesis of γ-Fe2O3/CNT composite as high-performance anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 770, 116-124.	2.8	47
34	Laterally aligned quantum rings: From one-dimensional chains to two-dimensional arrays. Applied Physics Letters, 2012, 100, .	1.5	44
35	Highly repeatable and sensitive three-dimensional γ-Fe2O3@reduced graphene oxide gas sensors by magnetic-field assisted assembly process. Sensors and Actuators B: Chemical, 2020, 306, 127546.	4.0	43
36	Construction, Application and Verification of a Novel Formaldehyde Gas Sensor System Based on Ni-Doped SnO ₂ Nanoparticles. IEEE Sensors Journal, 2021, 21, 11023-11030.	2.4	43

Zніниа **Z**нои

#	Article	IF	CITATIONS
37	Three-dimensional skeleton networks of reduced graphene oxideÂnanosheets/vanadium pentoxide nanobelts hybrid for high-performance supercapacitors. Electrochimica Acta, 2019, 295, 14-21.	2.6	38
38	High Responsivity Photoconductors Based on Iron Pyrite Nanowires Using Sulfurization of Anodized Iron Oxide Nanotubes. Nano Letters, 2014, 14, 6002-6009.	4.5	34
39	Engineering sulfonated polyaniline molecules on reduced graphene oxide nanosheets for high-performance corrosion protective coatings. Applied Surface Science, 2019, 484, 663-675.	3.1	34
40	High-Performance Wearable Sensor Inspired by the Neuron Conduction Mechanism through Gold-Induced Sulfur Vacancies. ACS Sensors, 2022, 7, 816-826.	4.0	34
41	Rapid mass production of ZnO nanowires by a modified carbothermal reduction method. Materials Letters, 2011, 65, 832-835.	1.3	33
42	Growth and band alignment of Bi2Se3 topological insulator on H-terminated Si(111) van der Waals surface. Applied Physics Letters, 2013, 102, 074106.	1.5	33
43	Highly sensitive NO ₂ gas sensors based on hexagonal SnS ₂ nanoplates operating at room temperature. Nanotechnology, 2020, 31, 075501.	1.3	30
44	Field emission from in situ-grown vertically aligned SnO2 nanowire arrays. Nanoscale Research Letters, 2012, 7, 117.	3.1	28
45	Noble metal (Ag, Au, Pd and Pt) doped TaS ₂ monolayer for gas sensing: a first-principles investigation. Physical Chemistry Chemical Physics, 2021, 23, 18359-18368.	1.3	28
46	Rapid synthesis and characterization of magnesium oxide nanocubes via DC arc discharge. Materials Letters, 2011, 65, 100-103.	1.3	26
47	Development of dextran nanoparticles for stabilizing delicate proteins. Nanoscale Research Letters, 2013, 8, 197.	3.1	26
48	Linear humidity response of carbon dot-modified molybdenum disulfide. Physical Chemistry Chemical Physics, 2018, 20, 4083-4091.	1.3	25
49	Room temperature DMMP gas sensing based on cobalt phthalocyanine derivative/graphene quantum dot hybrid materials. RSC Advances, 2021, 11, 14805-14813.	1.7	24
50	Three-Dimensional Fe3O4@Reduced Graphene Oxide Heterojunctions for High-Performance Room-Temperature NO2 Sensors. Frontiers in Materials, 2019, 6, .	1.2	23
51	Enhancing room-temperature NO ₂ gas sensing performance based on a metal phthalocyanine/graphene quantum dot hybrid material. RSC Advances, 2021, 11, 5618-5628.	1.7	22
52	Functionalized self-assembled monolayers on mesoporous silica nanoparticles with high surface coverage. Nanoscale Research Letters, 2012, 7, 334.	3.1	20
53	Microwave fabrication of Cu2ZnSnS4 nanoparticle and its visible light photocatalytic properties. Nanoscale Research Letters, 2014, 9, 477.	3.1	20
54	A low-cost and efficient electronic nose system for quantification of multiple indoor air contaminants utilizing HC and PLSR. Sensors and Actuators B: Chemical, 2022, 350, 130768.	4.0	20

Zніниа **Z**нои

#	Article	IF	CITATIONS
55	Development of Inorganic Solar Cells by Nano-technology. Nano-Micro Letters, 2012, 4, 124-134.	14.4	18
56	Highly enhanced gas sensing in single-walled carbon nanotube-based thin-film transistor sensors by ultraviolet light irradiation. Nanoscale Research Letters, 2012, 7, 644.	3.1	18
57	The effect of pristine carbon-based nanomaterial on the growth of green gram sprouts and pH of water. Nanoscale Research Letters, 2014, 9, 583.	3.1	17
58	Phase-pure iron pyrite nanocrystals for low-cost photodetectors. Nanoscale Research Letters, 2014, 9, 549.	3.1	16
59	SnO2Nanowire Arrays and Electrical Properties Synthesized by Fast Heating a Mixture of SnO2and CNTs Waste Soot. Nanoscale Research Letters, 2009, 4, 1434-8.	3.1	15
60	Enhancing room-temperature NO2 detection of cobalt phthalocyanine based gas sensor at an ultralow laser exposure. Physical Chemistry Chemical Physics, 2020, 22, 18499-18506.	1.3	14
61	Influence of graphite oxide drying temperature on ultra-fast microwave synthesis of graphene. Journal of Materials Science: Materials in Electronics, 2013, 24, 1298-1302.	1.1	10
62	Monolithic integration of metastable <i>α</i> -In ₂ Se ₃ thin film on H-passivated Si(1 1 1) for photovoltaic applications. Journal Physics D: Applied Physics, 2016, 49, 145108.	1.3	10
63	Mid-infrared photodetectors based on InSb micro/nanostructures grown on low-cost mica substrates. Materials Letters, 2016, 169, 77-81.	1.3	10
64	Ion-Beam-Directed Self-Ordering of Ga Nanodroplets on GaAs Surfaces. Nanoscale Research Letters, 2016, 11, 38.	3.1	9
65	Site-controlled fabrication of Ga nanodroplets by focused ion beam. Applied Physics Letters, 2014, 104, 133104.	1.5	8
66	The high-yield growth of Bi 2 Se 3 nanostructures via facile physical vapor deposition. Vacuum, 2017, 140, 58-62.	1.6	8
67	Microwave-Assisted Chitosan-Functionalized Graphene Oxide as Controlled Intracellular Drug Delivery Nanosystem for Synergistic Antitumour Activity. Nanoscale Research Letters, 2021, 16, 75.	3.1	8
68	Patterning Bi ₂ Se ₃ single-crystalline thin films on Si(111) substrates using strong oxidizing acids. RSC Advances, 2017, 7, 32294-32299.	1.7	6
69	In situ coating nickel organic complexes on free-standing nickel wire films for volumetric-energy-dense supercapacitors. Nanotechnology, 2018, 29, 275401.	1.3	5
70	Significant Enhancement of Hydrogen Production in MoS ₂ /Cu ₂ ZnSnS ₄ Nanoparticles. Particle and Particle Systems Characterization, 2018, 35, 1700472.	1.2	4
71	Photovoltaic enhancement of Si solar cells by assembled carbon nanotubes. Nano-Micro Letters, 2010, 2, 22.	14.4	4
72	Low Cost Pyranometer for Broad Range and Its Credibility Check with Standard Pyranometer. Journal of Nanoelectronics and Optoelectronics, 2015, 10, 119-125.	0.1	2