Celso Grebogi

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7090635/celso-grebogi-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 296
 20,712
 70
 138

 papers
 citations
 h-index
 g-index

 304
 22,659
 4.4
 6.61

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
296	Quasi-periodic solutions and homoclinic bifurcation in an impact inverted pendulum. <i>Physica D:</i> Nonlinear Phenomena, 2022 , 434, 133210	3.3	O
295	Rate-dependent tipping and early warning in a thermoacoustic system under extreme operating environment. <i>Chaos</i> , 2021 , 31, 113115	3.3	2
294	Double-Stream Differential Chaos Shift Keying Communications Exploiting Chaotic Shape Forming Filter and Sequence Mapping. <i>IEEE Transactions on Wireless Communications</i> , 2021 , 1-1	9.6	1
293	Multiattention Adaptation Network for Motor Imagery Recognition. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems,</i> 2021 , 1-13	7.3	3
292	Artificial intelligence enhances the performance of chaotic baseband wireless communication. <i>IET Communications</i> , 2021 , 15, 1467	1.3	4
291	Rate-dependent bifurcation dodging in a thermoacoustic system driven by colored noise. <i>Nonlinear Dynamics</i> , 2021 , 104, 2733-2743	5	7
290	STRANGE NONCHAOTIC ATTRACTORS AND MULTISTABILITY IN A TWO-DEGREE-OF-FREEDOM QUASIPERIODICALLY FORCED VIBRO-IMPACT SYSTEM. <i>Fractals</i> , 2021 , 29, 2150103	3.2	1
289	Bi-directional impulse chaos control in crystal growth. <i>Chaos</i> , 2021 , 31, 053106	3.3	O
288	Invariant torus and its destruction for an oscillator with dry friction. <i>Nonlinear Dynamics</i> , 2021 , 104, 346	5 7 5	
287	Some elements for a history of the dynamical systems theory. <i>Chaos</i> , 2021 , 31, 053110	3.3	3
286	Parameter impulse control of chaos in crystal growth process. <i>Journal of Crystal Growth</i> , 2021 , 563, 120	60 ₁ 7. <i>6</i>	3
285	Strange Nonchaotic Attractors From a Family of Quasiperiodically Forced Piecewise Linear Maps. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2021 , 31, 2150111	2	
284	Emergence of transient chaos and intermittency in machine learning. <i>Journal of Physics Complexity</i> , 2021 , 2, 035014	1.8	4
283	Complex Network Analysis of Experimental EEG Signals for Decoding Brain Cognitive State. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2021 , 68, 531-535	3.5	1
282	A Graph-Temporal Fused Dual-Input Convolutional Neural Network for Detecting Sleep Stages from EEG Signals. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2021 , 68, 777-781	3.5	9
281	Control of tipping points in stochastic mutualistic complex networks. <i>Chaos</i> , 2021 , 31, 023118	3.3	3
280	Chaos Generation With Impulse Control: Application to Non-Chaotic Systems and Circuit Design. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2021 , 68, 3012-3022	3.9	4

(2020-2021)

279	Hausdorff dimension of chaotic attractors in a class of nonsmooth systems. <i>Chaos, Solitons and Fractals</i> , 2021 , 151, 111218	9.3	1	
278	Mathematical model of brain tumour growth with drug resistance. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2021 , 103, 106013	3.7	1	
277	The Existence of AubryMather sets for the FermiDlam Model. <i>Qualitative Theory of Dynamical Systems</i> , 2021 , 20, 1	0.8	1	
276	Machine learning prediction of critical transition and system collapse. <i>Physical Review Research</i> , 2021 , 3,	3.9	17	
275	The existence of strange nonchaotic attractors in the quasiperiodically forced Ricker family. <i>Chaos</i> , 2020 , 30, 053124	3.3	3	
274	Multilayer brain network combined with deep convolutional neural network for detecting major depressive disorder. <i>Nonlinear Dynamics</i> , 2020 , 102, 667-677	5	6	
273	Nonlinear dynamics in the flexible shaft rotating lifting system of silicon crystal puller using Czochralski method. <i>Nonlinear Dynamics</i> , 2020 , 102, 771-784	5	3	
272	Topological horseshoe in a single-scroll Chen system with time delay. <i>Chaos, Solitons and Fractals</i> , 2020 , 132, 109593	9.3	3	
271	One-Way Hash Function Based on Delay-Induced Hyperchaos. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2020 , 30, 2050020	2	5	
270	Noise-enabled species recovery in the aftermath of a tipping point. <i>Physical Review E</i> , 2020 , 101, 01220	062.4	6	
269	IEEE Access Special Section Editorial: Complex Network Analysis and Engineering in 5G and Beyond Toward 6G. <i>IEEE Access</i> , 2020 , 8, 227751-227755	3.5		
268	REsler-network with time delay: Univariate impulse pinning synchronization. <i>Chaos</i> , 2020 , 30, 123101	3.3	1	
267	Multistability in a quasiperiodically forced piecewise smooth dynamical system. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2020 , 84, 105165	3.7	5	
266	A Coincidence-Filtering-Based Approach for CNNs in EEG-Based Recognition. <i>IEEE Transactions on Industrial Informatics</i> , 2020 , 16, 7159-7167	11.9	18	
265	Frequency stability in modern power network from complex network viewpoint. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2020 , 545, 123558	3.3	O	
264	Sudden regime shifts after apparent stasis: Comment on "Long transients in ecology: Theory and applications" by Andrew Morozov et al. <i>Physics of Life Reviews</i> , 2020 , 32, 41-43	2.1	2	
263	Tipping point and noise-induced transients in ecological networks. <i>Journal of the Royal Society Interface</i> , 2020 , 17, 20200645	4.1	9	
262	Detecting gas-liquid two-phase flow pattern determinism from experimental signals with missing ordinal patterns. <i>Chaos</i> , 2020 , 30, 093102	3.3	O	

261	Radio-Wave Communication With Chaos. IEEE Access, 2020, 8, 167019-167026	3.5	6
260	Self-adaptation of chimera states. <i>Physical Review E</i> , 2019 , 99, 010201	2.4	9
259	Existence of Chaos in the Chen System with Linear Time-Delay Feedback. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2019 , 29, 1950114	2	4
258	Digital underwater communication with chaos. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2019 , 73, 14-24	3.7	16
257	Strange nonchaotic attractors in a nonsmooth dynamical system. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2019 , 78, 104858	3.7	12
256	Experimental Phase Separation Differential Chaos Shift Keying Wireless Communication Based on Matched Filter. <i>IEEE Access</i> , 2019 , 7, 25274-25287	3.5	9
255	Spike-burst chimera states in an adaptive exponential integrate-and-fire neuronal network. <i>Chaos</i> , 2019 , 29, 043106	3.3	14
254	Chaotic attractor of the normal form map for grazing bifurcations of impact oscillators. <i>Physica D: Nonlinear Phenomena</i> , 2019 , 398, 164-170	3.3	9
253	Quantitative assessment of cerebral connectivity deficiency and cognitive impairment in children with prenatal alcohol exposure. <i>Chaos</i> , 2019 , 29, 041101	3.3	4
252	Hyperchaos synchronization using univariate impulse control. <i>Physical Review E</i> , 2019 , 100, 052215	2.4	5
251	. IEEE Transactions on Vehicular Technology, 2019 , 68, 578-591	6.8	21
250	Multiplex Limited Penetrable Horizontal Visibility Graph from EEG Signals for Driver Fatigue Detection. <i>International Journal of Neural Systems</i> , 2019 , 29, 1850057	6.2	20
249	A Novel Multiplex Network-Based Sensor Information Fusion Model and Its Application to Industrial Multiphase Flow System. <i>IEEE Transactions on Industrial Informatics</i> , 2018 , 14, 3982-3988	11.9	61
248	Predicting tipping points in mutualistic networks through dimension reduction. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E639-E647	11.5	62
247	Relativistic quantum chaos-An emergent interdisciplinary field. <i>Chaos</i> , 2018 , 28, 052101	3.3	20
246	Entropy-based generating Markov partitions for complex systems. <i>Chaos</i> , 2018 , 28, 033611	3.3	9
245	Multivariate empirical mode decomposition and multiscale entropy analysis of EEG signals from SSVEP-based BCI system. <i>Europhysics Letters</i> , 2018 , 122, 40010	1.6	2
244	Chaos-Based Underwater Communication With Arbitrary Transducers and Bandwidth. <i>Applied Sciences (Switzerland)</i> , 2018 , 8, 162	2.6	20

(2016-2018)

243	Link Prediction Investigation of Dynamic Information Flow in Epilepsy. <i>Journal of Healthcare Engineering</i> , 2018 , 2018, 8102597	3.7	4
242	Relativistic quantum chaos. <i>Physics Reports</i> , 2018 , 753, 1-128	27.7	24
241	A chaotic spread spectrum system for underwater acoustic communication. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2017 , 478, 77-92	3.3	32
240	Universal data-based method for reconstructing complex networks with binary-state dynamics. <i>Physical Review E</i> , 2017 , 95, 032303	2.4	24
239	Tumour chemotherapy strategy based on impulse control theory. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2017 , 375,	3	16
238	Dynamics of delay induced composite multi-scroll attractor and its application in encryption. <i>International Journal of Non-Linear Mechanics</i> , 2017 , 94, 334-342	2.8	19
237	Weak connections form an infinite number of patterns in the brain. Scientific Reports, 2017, 7, 46472	4.9	7
236	Secure Communication Based on Hyperchaotic Chen System with Time-Delay. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2017 , 27, 1750076	2	20
235	Quasiperiodicity and suppression of multistability in nonlinear dynamical systems. <i>European Physical Journal: Special Topics</i> , 2017 , 226, 1703-1719	2.3	12
234	Chaos-based wireless communication resisting multipath effects. <i>Physical Review E</i> , 2017 , 96, 032226	2.4	21
233	Synaptic Plasticity and Spike Synchronisation in Neuronal Networks. <i>Brazilian Journal of Physics</i> , 2017 , 47, 678-688	1.2	8
232	Uncovering hidden flows in physical networks. <i>Europhysics Letters</i> , 2017 , 118, 58001	1.6	
231	Closed-Loop Control of Complex Networks: A Trade-Off between Time and Energy. <i>Physical Review Letters</i> , 2017 , 119, 198301	7.4	35
230	General analytical solutions for DC/AC circuit-network analysis. <i>European Physical Journal: Special Topics</i> , 2017 , 226, 1829-1844	2.3	2
229	Methods for removal of unwanted signals from gravity time-series: Comparison using linear techniques complemented with analysis of system dynamics. <i>Chaos</i> , 2017 , 27, 103126	3.3	
228	Wavelet Multiresolution Complex Network for Analyzing Multivariate Nonlinear Time Series. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1750123	2	55
227	Cascade failure analysis of power grid using new load distribution law and node removal rule. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2016 , 442, 239-251	3.3	34
226	Reconstructing direct and indirect interactions in networked public goods game. <i>Scientific Reports</i> , 2016 , 6, 30241	4.9	13

225	Data based identification and prediction of nonlinear and complex dynamical systems. <i>Physics Reports</i> , 2016 , 644, 1-76	27.7	177
224	A geometrical approach to control and controllability of nonlinear dynamical networks. <i>Nature Communications</i> , 2016 , 7, 11323	17.4	73
223	Experimental validation of wireless communication with chaos. <i>Chaos</i> , 2016 , 26, 083117	3.3	38
222	Gaussian orthogonal ensemble statistics in graphene billiards with the shape of classically integrable billiards. <i>Physical Review E</i> , 2016 , 94, 062214	2.4	11
221	Transient chaos - a resolution of breakdown of quantum-classical correspondence in optomechanics. <i>Scientific Reports</i> , 2016 , 6, 35381	4.9	15
220	Control and prediction for blackouts caused by frequency collapse in smart grids. <i>Chaos</i> , 2016 , 26, 0931	1 ,9 3	17
219	Superpersistent currents and whispering gallery modes in relativistic quantum chaotic systems. <i>Scientific Reports</i> , 2015 , 5, 8963	4.9	15
218	Community control in cellular protein production: consequences for amino acid starvation. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2015 , 373,	3	1
217	One node driving synchronisation. <i>Scientific Reports</i> , 2015 , 5, 18091	4.9	3
216	Conductance fluctuations in chaotic bilayer graphene quantum dots. <i>Physical Review E</i> , 2015 , 92, 01291	82.4	8
215	Approximate solution for frequency synchronization in a finite-size Kuramoto model. <i>Physical Review E</i> , 2015 , 92, 062808	2.4	4
214	Granger causal time-dependent source connectivity in the somatosensory network. <i>Scientific Reports</i> , 2015 , 5, 10399	4.9	26
213	Emergence of multicluster chimera states. Scientific Reports, 2015, 5, 12988	4.9	22
212	Universal formalism of Fano resonance. AIP Advances, 2015, 5, 017137	1.5	23
211	Integrative Model of Oxidative Stress Adaptation in the Fungal Pathogen Candida albicans. <i>PLoS ONE</i> , 2015 , 10, e0137750	3.7	40
210	Optimized spectral estimation for nonlinear synchronizing systems. <i>Physical Review E</i> , 2014 , 89, 032912	2.4	2
209	Diffusion in randomly perturbed dissipative dynamics. <i>Europhysics Letters</i> , 2014 , 108, 40002	1.6	4
208	Mechanisms underlying the exquisite sensitivity of Candida albicans to combinatorial cationic and oxidative stress that enhances the potent fungicidal activity of phagocytes. <i>MBio</i> , 2014 , 5, e01334-14	7.8	57

207	Level spacing statistics for two-dimensional massless Dirac billiards. <i>Chinese Physics B</i> , 2014 , 23, 070507	1.2	7
206	Quantum manifestation of a synchronization transition in optomechanical systems. <i>Physical Review A</i> , 2014 , 90,	2.6	38
205	Overarching framework for data-based modelling. Europhysics Letters, 2014, 105, 30004	1.6	11
204	Resiliently evolving supply-demand networks. <i>Physical Review E</i> , 2014 , 89, 012801	2.4	14
203	Nonlinear dynamics and quantum entanglement in optomechanical systems. <i>Physical Review Letters</i> , 2014 , 112, 110406	7.4	71
202	Wireless communication with chaos. <i>Physical Review Letters</i> , 2013 , 110, 184101	7.4	87
201	Quantum chaotic scattering in graphene systems in the absence of invariant classical dynamics. <i>Physical Review E</i> , 2013 , 87, 052908	2.4	9
200	Natural synchronization in power-grids with anti-correlated units. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2013 , 18, 1035-1046	3.7	36
199	Harnessing quantum transport by transient chaos. <i>Chaos</i> , 2013 , 23, 013125	3.3	20
198	Structure and function in flow networks. <i>Europhysics Letters</i> , 2013 , 101, 68001	1.6	11
197	Chiral scars in chaotic Dirac fermion systems. <i>Physical Review Letters</i> , 2013 , 110, 064102	7.4	32
196	From START to FINISH: the influence of osmotic stress on the cell cycle. <i>PLoS ONE</i> , 2013 , 8, e68067	3.7	23
195	Inference of Granger causal time-dependent influences in noisy multivariate time series. <i>Journal of Neuroscience Methods</i> , 2012 , 203, 173-85	3	52
194	Optimality in DNA repair. <i>Journal of Theoretical Biology</i> , 2012 , 292, 39-43	2.3	2
193	A syringe-focused ultrasound device for simultaneous injection of DNA and gene transfer. <i>Journal of Gene Medicine</i> , 2012 , 14, 54-61	3.5	4
192	Mutual information rate and bounds for it. <i>PLoS ONE</i> , 2012 , 7, e46745	3.7	18
191	Combinatorial stresses kill pathogenic Candida species. <i>Medical Mycology</i> , 2012 , 50, 699-709	3.9	67
190	Are the fractal skeletons the explanation for the narrowing of arteries due to cell trapping in a disturbed blood flow?. <i>Computers in Biology and Medicine</i> , 2012 , 42, 276-81	7	9

189	Collective almost synchronisation in complex networks. <i>PLoS ONE</i> , 2012 , 7, e48118	3.7	11
188	Dynamical collapse of trajectories. <i>Europhysics Letters</i> , 2012 , 98, 20001	1.6	1
187	Conductance fluctuations in graphene systems: The relevance of classical dynamics. <i>Physical Review B</i> , 2012 , 85,	3.3	16
186	THE EMERGENCE AND EVOLUTION OF COOPERATION ON COMPLEX NETWORKS. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2012 , 22, 1250228	2	2
185	UNCOVERING MISSING SYMBOLS IN COMMUNICATION WITH FILTERED CHAOTIC SIGNALS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250199	2	8
184	A matter of life or death: modeling DNA damage and repair in bacteria. <i>Biophysical Journal</i> , 2011 , 100, 814-21	2.9	12
183	Quantum chaotic scattering in graphene systems. <i>Europhysics Letters</i> , 2011 , 94, 40004	1.6	37
182	Nonlinear Dynamics: A Brief Introduction 2011 , 331-338		
181	Predicting catastrophes in nonlinear dynamical systems by compressive sensing. <i>Physical Review Letters</i> , 2011 , 106, 154101	7.4	202
180	Network Reconstruction Based on Evolutionary-Game Data via Compressive Sensing. <i>Physical Review X</i> , 2011 , 1,	9.1	74
179	Abnormal electron paths induced by Klein tunneling in graphene quantum point contacts. <i>Physical Review B</i> , 2011 , 84,	3.3	14
178	Extensively chaotic motion in electrostatically driven nanowires and applications. <i>Nano Letters</i> , 2010 , 10, 406-13	11.5	33
177	Queueing phase transition: theory of translation. <i>Physical Review Letters</i> , 2009 , 102, 198104	7.4	43
176	Crisis-induced unstable dimension variability in a dynamical system. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2008 , 372, 5569-5574	2.3	10
175	The limit case response of the archetypal oscillator for smooth and discontinuous dynamics. <i>International Journal of Non-Linear Mechanics</i> , 2008 , 43, 462-473	2.8	70
174	Dynamically multilayered visual system of the multifractal fly. <i>Physical Review Letters</i> , 2006 , 97, 178102	7.4	8
173	Chemical and biological activity in open flows: A dynamical system approach. <i>Physics Reports</i> , 2005 , 413, 91-196	27.7	161
172	Simulating a chaotic process. <i>Brazilian Journal of Physics</i> , 2005 , 35, 139-147	1.2	2

(2000-2004)

171	Stability properties of nonhyperbolic chaotic attractors with respect to noise. <i>Physical Review Letters</i> , 2004 , 93, 250603	7.4	8
170	Reactive particles in random flows. <i>Physical Review Letters</i> , 2004 , 92, 174101	7.4	21
169	Escaping from nonhyperbolic chaotic attractors. <i>Physical Review Letters</i> , 2004 , 92, 234101	7.4	18
168	Basins of Attraction of Periodic Oscillations in Suspension Bridges. <i>Nonlinear Dynamics</i> , 2004 , 37, 207-22	26	17
167	Unstable dimension variability and codimension-one bifurcations of two-dimensional maps. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2004 , 321, 244-251	2.3	3
166	MULTISTABILITY, BASIN BOUNDARY STRUCTURE, AND CHAOTIC BEHAVIOR IN A SUSPENSION BRIDGE MODEL. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2004 , 14, 927-950	2	29
165	Topology of Windows in the High-Dimensional Parameter Space of Chaotic Maps. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2003 , 13, 2681-2688	2	12
164	Bubbling and riddling of higher-dimensional attractors. <i>Chaos, Solitons and Fractals</i> , 2003 , 17, 61-66	9.3	9
163	Erosion of the safe basin for the transversal oscillations of a suspension bridge. <i>Chaos, Solitons and Fractals</i> , 2003 , 18, 829-841	9.3	28
162	Communication-Based on Topology Preservation of Chaotic Dynamics. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2003 , 13, 2551-2560	2	6
161	Why are chaotic attractors rare in multistable systems?. <i>Physical Review Letters</i> , 2003 , 91, 134102	7.4	44
160	Shadowability of Chaotic Dynamical Systems. <i>Handbook of Dynamical Systems</i> , 2002 , 2, 313-344		2
159	Dynamics of a Hilonilozi-type map. <i>Chaos, Solitons and Fractals</i> , 2001 , 12, 2323-2341	9.3	30
158	RIDDLED BASINS AND UNSTABLE DIMENSION VARIABILITY IN CHAOTIC SYSTEMS WITH AND WITHOUT SYMMETRY. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2001 , 11, 2689-2698	2	11
157	RECONSTRUCTION OF INFORMATION-BEARING CHAOTIC SIGNALS IN ADDITIVE WHITE GAUSSIAN NOISE: PERFORMANCE ANALYSIS AND EVALUATION. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2001 , 11, 2631-2635	2	4
156	Output functions and fractal dimensions in dynamical systems. <i>Physical Review Letters</i> , 2001 , 86, 2778-8	1 7.4	6
155	OBSTRUCTION TO DETERMINISTIC MODELING OF CHAOTIC SYSTEMS WITH AN INVARIANT SUBSPACE. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2000 , 10, 683-693	2	9
154	FEEDBACK SYNCHRONIZATION USING POLE-PLACEMENT CONTROL. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2000, 10, 2611-2617	2	1

153	Communication through chaotic modeling of languages. <i>Physical Review E</i> , 2000 , 61, 3590-600	2.4	14
152	Unstable dimension variability and synchronization of chaotic systems. <i>Physical Review E</i> , 2000 , 62, 462	-&.4	29
151	Topological scaling and gap filling at crisis. <i>Physical Review E</i> , 2000 , 61, 5019-32	2.4	27
150	Exploiting the natural redundancy of chaotic signals in communication systems. <i>Physical Review Letters</i> , 2000 , 85, 2629-32	7.4	15
149	Lai and grebogi reply:. <i>Physical Review Letters</i> , 2000 , 85, 473	7.4	3
148	Topology of high-dimensional chaotic scattering. <i>Physical Review E</i> , 2000 , 62, 6421-8	2.4	19
147	Integrated chaotic communication scheme. <i>Physical Review E</i> , 2000 , 62, 4835-45	2.4	28
146	COLOR MAP OF LYAPUNOV EXPONENTS OF INVARIANT SETS. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 1999 , 09, 1459-1463	2	7
145	Preference of attractors in noisy multistable systems. <i>Physical Review E</i> , 1999 , 59, 5253-60	2.4	100
144	Universal behavior in the parametric evolution of chaotic saddles. <i>Physical Review E</i> , 1999 , 59, 5261-5	2.4	11
143	Modeling of deterministic chaotic systems. <i>Physical Review E</i> , 1999 , 59, 2907-2910	2.4	45
142	Driving trajectories in complex systems. <i>Physical Review E</i> , 1999 , 59, 4062-4070	2.4	16
141	Unstable dimension variability in coupled chaotic systems. <i>Physical Review E</i> , 1999 , 60, 5445-54	2.4	24
140	Riddling of Chaotic Sets in Periodic Windows. <i>Physical Review Letters</i> , 1999 , 83, 2926-2929	7.4	22
139	Modeling of Coupled Chaotic Oscillators. <i>Physical Review Letters</i> , 1999 , 82, 4803-4806	7.4	48
138	Border collision bifurcations in two-dimensional piecewise smooth maps. <i>Physical Review E</i> , 1999 , 59, 4052-4061	2.4	195
137	Chemical or biological activity in open chaotic flows. <i>Physical Review E</i> , 1999 , 59, 5468-81	2.4	47
136	Communicating with chaos using two-dimensional symbolic dynamics. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1999 , 255, 75-81	2.3	37

135	Metamorphosis of chaotic saddle. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1999 , 259, 445-450	2.3	11
134	Bifurcation rigidity. <i>Physica D: Nonlinear Phenomena</i> , 1999 , 129, 35-56	3.3	34
133	Tracer dynamics in a flow of driven vortices. <i>Physical Review E</i> , 1999 , 59, 1605-1614	2.4	11
132	Length Scales of Clustering in Granular Gases. <i>Physical Review Letters</i> , 1999 , 82, 4819-4822	7.4	13
131	Dynamical properties of a simple mechanical system with a large number of coexisting periodic attractors. <i>Chaos, Solitons and Fractals</i> , 1998 , 9, 171-180	9.3	36
130	Basin bifurcation in quasiperiodically forced systems. <i>Physical Review E</i> , 1998 , 58, 3060-3066	2.4	21
129	Robust Chaos. <i>Physical Review Letters</i> , 1998 , 80, 3049-3052	7.4	21 0
128	Advection of Active Particles in Open Chaotic Flows. <i>Physical Review Letters</i> , 1998 , 80, 500-503	7.4	90
127	Coding, Channel Capacity, and Noise Resistance in Communicating with Chaos. <i>Physical Review Letters</i> , 1997 , 79, 3787-3790	7.4	85
126	From High Dimensional Chaos to Stable Periodic Orbits: The Structure of Parameter Space. <i>Physical Review Letters</i> , 1997 , 78, 4561-4564	7.4	82
125	Characterization of the Natural Measure by Unstable Periodic Orbits in Chaotic Attractors. <i>Physical Review Letters</i> , 1997 , 79, 649-652	7.4	57
124	Extracting unstable periodic orbits from chaotic time series data. <i>Physical Review E</i> , 1997 , 55, 5398-541	72.4	92
123	Multistability and the control of complexity. <i>Chaos</i> , 1997 , 7, 597-604	3.3	122
122	How Long Do Numerical Chaotic Solutions Remain Valid?. <i>Physical Review Letters</i> , 1997 , 79, 59-62	7.4	131
121	Noise Filtering in Communication with Chaos. <i>Physical Review Letters</i> , 1997 , 78, 1247-1250	7.4	7 ²
120	Unstable dimension variability: A source of nonhyperbolicity in chaotic systems. <i>Physica D: Nonlinear Phenomena</i> , 1997 , 109, 81-90	3.3	84
119	Computing the measure of nonattracting chaotic sets. <i>Physica D: Nonlinear Phenomena</i> , 1997 , 108, 1-11	3.3	12
118	Phase-locking in quasiperiodically forced systems. <i>Physics Reports</i> , 1997 , 290, 11-25	27.7	27

117	Controlling chaotic dynamical systems. Systems and Control Letters, 1997, 31, 307-312	2.4	48
116	Control and applications of chaos. <i>Journal of the Franklin Institute</i> , 1997 , 334, 1115-1146	4	12
115	Detecting unstable periodic orbits in chaotic experimental data. <i>Physical Review Letters</i> , 1996 , 76, 4705	5- 4 7408	130
114	Riddling Bifurcation in Chaotic Dynamical Systems. <i>Physical Review Letters</i> , 1996 , 77, 55-58	7.4	165
113	Universal grazing bifurcations in impact oscillators. <i>Physical Review E</i> , 1996 , 53, 134-139	2.4	20
112	Map with more than 100 coexisting low-period periodic attractors. <i>Physical Review E</i> , 1996 , 54, 71-81	2.4	125
111	Noise-Induced Riddling in Chaotic Systems. <i>Physical Review Letters</i> , 1996 , 77, 5047-5050	7.4	56
110	Scaling behavior of transition to chaos in quasiperiodically driven dynamical systems. <i>Physical Review E</i> , 1996 , 54, 6070-6073	2.4	31
109	Complexity in Hamiltonian-driven dissipative chaotic dynamical systems. <i>Physical Review E</i> , 1996 , 54, 4667-4675	2.4	14
108	Characterizing riddled fractal sets. <i>Physical Review E</i> , 1996 , 53, 1371-1374	2.4	17
107	Critical Exponent for Gap Filling at Crisis. <i>Physical Review Letters</i> , 1996 , 77, 3102-3105	7.4	29
106	Universal behavior of impact oscillators near grazing incidence. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1995 , 201, 197-204	2.3	72
105	Intermingled basins and two-state on-off intermittency. <i>Physical Review E</i> , 1995 , 52, R3313-R3316	2.4	118
104	Controlling complexity. <i>Physical Review Letters</i> , 1995 , 75, 4023-4026	7.4	72
103	Self-organization and chaos in a fluidized bed. <i>Physical Review Letters</i> , 1995 , 75, 2308-2311	7.4	88
102	Double crises in two-parameter dynamical systems. <i>Physical Review Letters</i> , 1995 , 75, 2478-2481	7.4	39
101	Multiparameter control of chaos. <i>Physical Review E</i> , 1995 , 52, 3553-3557	2.4	20
100	Fractal boundaries in open hydrodynamical flows: Signatures of chaotic saddles. <i>Physical Review E</i> , 1995 , 51, 4076-4088	2.4	71

(1993-1995)

99	Efficient switching between controlled unstable periodic orbits in higher dimensional chaotic systems. <i>Physical Review E</i> , 1995 , 51, 4169-4172	2.4	25
98	Predictability in time series. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1995 , 209, 327-332	2.3	9
97	Synchronization of spatiotemporal chaotic systems by feedback control. <i>Physical Review E</i> , 1994 , 50, 1894-1899	2.4	22
96	Grazing bifurcations in impact oscillators. <i>Physical Review E</i> , 1994 , 50, 4427-4444	2.4	211
95	Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. <i>Physical Review Letters</i> , 1994 , 73, 1927-1930	7.4	133
94	Crisis and enhancement of chaotic scattering. <i>Physical Review E</i> , 1994 , 49, 3761-3770	2.4	20
93	Controlling chaos in a temporally irregular environment. <i>Physica D: Nonlinear Phenomena</i> , 1994 , 74, 386	-394	14
92	Experimental control of chaos for communication. <i>Physical Review Letters</i> , 1994 , 73, 1781-1784	7.4	220
91	Crisis control: Preventing chaos-induced capsizing of a ship. <i>Physical Review E</i> , 1994 , 50, 4228-4230	2.4	8
90	Converting transient chaos into sustained chaos by feedback control. <i>Physical Review E</i> , 1994 , 49, 1094-	1.0.248	31
89	Linear Scaling Laws in Bifurcations of Scalar Maps. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1994 , 49, 1207-1211	1.4	4
88	Using small perturbations to control chaos. <i>Nature</i> , 1993 , 363, 411-417	50.4	689
87	Vertices in parameter space: Double crises which destroy chaotic attractors. <i>Physical Review Letters</i> , 1993 , 71, 1359-1362	7.4	36
86	Stabilizing chaotic-scattering trajectories using control. <i>Physical Review E</i> , 1993 , 48, 709-717	2.4	38
85	Synchronization of chaotic trajectories using control. <i>Physical Review E</i> , 1993 , 47, 2357-2360	2.4	114
84	Higher-dimensional targeting. <i>Physical Review E</i> , 1993 , 47, 305-310	2.4	69
83	Crisis in chaotic scattering. <i>Physical Review Letters</i> , 1993 , 71, 2212-2215	7.4	26
82	Controlling Hamiltonian chaos. <i>Physical Review E</i> , 1993 , 47, 86-92	2.4	82

81	Plateau onset for correlation dimension: When does it occur?. Physical Review Letters, 1993, 70, 3872-3	38 7 5 ₄	123
80	Geometric mechanism for antimonotonicity in scalar maps with two critical points. <i>Physical Review E</i> , 1993 , 48, 1676-1682	2.4	28
79	Temporal crossover from classical to quantum behavior: a Markov-chain approach. <i>Physics Letters, Section A: General, Atomic and Solid State Physics,</i> 1993 , 173, 148-152	2.3	14
78	Estimating correlation dimension from a chaotic time series: when does plateau onset occur?. <i>Physica D: Nonlinear Phenomena</i> , 1993 , 69, 404-424	3.3	143
77	Communicating with chaos. <i>Physical Review Letters</i> , 1993 , 70, 3031-3034	7.4	415
76	DETERMINATION OF CRISIS PARAMETER VALUES BY DIRECT OBSERVATION OF MANIFOLD TANGENCIES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1992, 02, 383-396	2	26
75	Controlling chaos in high dimensional systems. <i>Physical Review Letters</i> , 1992 , 69, 3479-3482	7.4	144
74	Algebraic decay and fluctuations of the decay exponent in Hamiltonian systems. <i>Physical Review A</i> , 1992 , 46, 4661-4669	2.6	57
73	Using chaos to direct orbits to targets in systems describable by a one-dimensional map. <i>Physical Review A</i> , 1992 , 45, 4165-4168	2.6	63
72	Algebraic decay and phase-space metamorphoses in microwave ionization of hydrogen Rydberg atoms. <i>Physical Review A</i> , 1992 , 45, 8284-8287	2.6	37
71	Quantum manifestations of chaotic scattering. <i>Physical Review Letters</i> , 1992 , 68, 3491-3494	7.4	105
70	Chaos in a double pendulum. <i>American Journal of Physics</i> , 1992 , 60, 491-499	0.7	100
69	Using the sensitive dependence of chaos (the "butterfly effect") to direct trajectories in an experimental chaotic system. <i>Physical Review Letters</i> , 1992 , 68, 2863-2866	7.4	110
68	Using chaos to target stationary states of flows. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1992 , 169, 349-354	2.3	51
67	Antimonotonicity: inevitable reversals of period-doubling cascades. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1992 , 162, 249-254	2.3	132
66	Controlling chaotic dynamical systems. <i>Physica D: Nonlinear Phenomena</i> , 1992 , 58, 165-192	3.3	314
65	Cubic maps as models of two-dimensional antimonotonicity. Chaos, Solitons and Fractals, 1991, 1, 137-	1494.3	8
64	Massive bifurcation of chaotic scattering. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1991 , 153, 21-26	2.3	18

(1988-1991)

63	Experimental confirmation of the theory for critical exponents of crisis. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1991 , 153, 105-109	2.3	35
62	Scaling law for characteristic times of noise-induced crises. <i>Physical Review A</i> , 1991 , 43, 1754-1769	2.6	72
61	Experimental confirmation of the scaling theory for noise-induced crises. <i>Physical Review Letters</i> , 1991 , 66, 1947-1950	7.4	55
60	Bifurcation to chaotic scattering. <i>Physica D: Nonlinear Phenomena</i> , 1990 , 46, 87-121	3.3	155
59	Multifractal properties of snapshot attractors of random maps. <i>Physical Review A</i> , 1990 , 41, 784-799	2.6	103
58	Transition to chaotic scattering. <i>Physical Review A</i> , 1990 , 42, 7025-7040	2.6	85
57	Using chaos to direct trajectories to targets. <i>Physical Review Letters</i> , 1990 , 65, 3215-3218	7.4	290
56	Controlling chaos. <i>Physical Review Letters</i> , 1990 , 64, 1196-1199	7·4	4288
55	Shadowing of physical trajectories in chaotic dynamics: Containment and refinement. <i>Physical Review Letters</i> , 1990 , 65, 1527-1530	7.4	185
54	Scaling of fractal basin boundaries near intermittency transitions to chaos. <i>Physical Review A</i> , 1989 , 40, 1576-1581	2.6	8
53	Spatiotemporal dynamics in a dispersively coupled chain of nonlinear oscillators. <i>Physical Review A</i> , 1989 , 39, 4835-4842	2.6	59
52	Evolution of attractors in quasiperiodically forced systems: From quasiperiodic to strange nonchaotic to chaotic. <i>Physical Review A</i> , 1989 , 39, 2593-2598	2.6	142
51	Quasiperiodic forcing and the observability of strange nonchaotic attractors. <i>Physica Scripta</i> , 1989 , 40, 442-444	2.6	14
50	Chaotic attractors on a 3-torus, and torus break-up. <i>Physica D: Nonlinear Phenomena</i> , 1989 , 39, 299-314	3.3	32
49	Theory of first order phase transitions for chaotic attractors of nonlinear dynamical systems. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1989 , 135, 343-348	2.3	35
48	Effect of electromagnetic fields on charged particle beam limiting current. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1989 , 135, 280-283	2.3	3
47	Dimensions of strange nonchaotic attractors. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1989 , 137, 167-172	2.3	76
46	Multiple coexisting attractors, Basin boundaries and basic sets. <i>Physica D: Nonlinear Phenomena</i> , 1988 , 32, 296-305	3.3	51

45	Strange saddles and the dimensions of their invariant manifolds. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1988 , 127, 199-204	2.3	119
44	Fractal boundaries for exit in Hamiltonian dynamics. <i>Physical Review A</i> , 1988 , 38, 930-938	2.6	120
43	Enhancement of limiting current of charged particle beams by ponderomotive energy. <i>Physics of Fluids</i> , 1988 , 31, 1277		6
42	Roundoff-induced periodicity and the correlation dimension of chaotic attractors. <i>Physical Review A</i> , 1988 , 38, 3688-3692	2.6	67
41	Unstable periodic orbits and the dimensions of multifractal chaotic attractors. <i>Physical Review A</i> , 1988 , 37, 1711-1724	2.6	258
40	Critical exponents for power-spectra scaling at mergings of chaotic bands. <i>Physical Review A</i> , 1988 , 38, 463-468	2.6	10
39	Unstable periodic orbits and the dimension of chaotic attractors. <i>Physical Review A</i> , 1987 , 36, 3522-352	42.6	64
38	Ergodic adiabatic invariants of chaotic systems. <i>Physical Review Letters</i> , 1987 , 59, 1173-1176	7.4	43
37	Fractal Basin Boundaries with Unique Dimensiona. <i>Annals of the New York Academy of Sciences</i> , 1987 , 497, 117-126	6.5	8
36	Critical exponents for crisis-induced intermittency. <i>Physical Review A</i> , 1987 , 36, 5365-5380	2.6	446
35	The goodness of ergodic adiabatic invariants. <i>Journal of Statistical Physics</i> , 1987 , 49, 511-550	1.5	43
34	Do numerical orbits of chaotic dynamical processes represent true orbits?. <i>Journal of Complexity</i> , 1987 , 3, 136-145	1.2	176
33	Multi-dimensioned intertwined basin boundaries: Basin structure of the kicked double rotor. <i>Physica D: Nonlinear Phenomena</i> , 1987 , 25, 347-360	3.3	96
32	Quasiperiodically forced dynamical systems with strange nonchaotic attractors. <i>Physica D: Nonlinear Phenomena</i> , 1987 , 26, 277-294	3.3	85
31	Simplicial approximation of Poincarlmaps of differential equations. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1987 , 124, 59-64	2.3	26
30	Broadening of spectral peaks at the merging of chaotic bands in period-doubling systems. <i>Physical Review A</i> , 1986 , 34, 2248-2254	2.6	10
29	Comment on "Sensitive dependence on parameters in nonlinear dynamics" and on "Fat fractals on the energy surface". <i>Physical Review Letters</i> , 1986 , 56, 266	7.4	14
28	Metamorphoses of basin boundaries in nonlinear dynamical systems. <i>Physical Review Letters</i> , 1986 , 56, 1011-1014	7.4	125

27	Ponderomotive confinement of charged-particle beams in a cylindrical waveguide. <i>Physical Review A</i> , 1986 , 34, 4083-4090	2.6	2
26	Vlasov susceptibility of relativistic magnetized plasma and application to free-electron lasers. <i>Physics of Fluids</i> , 1986 , 29, 1748		3
25	Critical exponent of chaotic transients in nonlinear dynamical systems. <i>Physical Review Letters</i> , 1986 , 57, 1284-1287	7.4	222
24	Attractors on an N-torus: Quasiperiodicity versus chaos. <i>Physica D: Nonlinear Phenomena</i> , 1985 , 15, 354	-3;7;3	82
23	Structure and crises of fractal basin boundaries. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1985 , 107, 51-54	2.3	30
22	Exterior dimension of fat fractals. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1985 , 110, 1-4	2.3	89
21	Locally coupled evolution of wave and particle distribution in general magnetoplasma geometry. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1985 , 111, 19-21	2.3	9
20	Fractal basin boundaries. <i>Physica D: Nonlinear Phenomena</i> , 1985 , 17, 125-153	3.3	407
19	Scaling behavior of windows in dissipative dynamical systems. <i>Physical Review Letters</i> , 1985 , 54, 1095-1	0 9 84	37
18	Guiding center Hamiltonian theory of free-electron lasers. <i>Physics of Fluids</i> , 1985 , 28, 1984		6
18	Guiding center Hamiltonian theory of free-electron lasers. <i>Physics of Fluids</i> , 1985 , 28, 1984 Super persistent chaotic transients. <i>Ergodic Theory and Dynamical Systems</i> , 1985 , 5, 341-372	0.9	6 80
		0.9	
17	Super persistent chaotic transients. <i>Ergodic Theory and Dynamical Systems</i> , 1985 , 5, 341-372 Relativistic ponderomotive Hamiltonian of two interacting electromagnetic waves. <i>Physical Review</i>		80
17 16	Super persistent chaotic transients. <i>Ergodic Theory and Dynamical Systems</i> , 1985 , 5, 341-372 Relativistic ponderomotive Hamiltonian of two interacting electromagnetic waves. <i>Physical Review A</i> , 1985 , 31, 914-920	2.6	80
17 16 15	Super persistent chaotic transients. <i>Ergodic Theory and Dynamical Systems</i> , 1985 , 5, 341-372 Relativistic ponderomotive Hamiltonian of two interacting electromagnetic waves. <i>Physical Review A</i> , 1985 , 31, 914-920 Strange attractors that are not chaotic. <i>Physica D: Nonlinear Phenomena</i> , 1984 , 13, 261-268	2.6	80 7 406
17 16 15	Super persistent chaotic transients. <i>Ergodic Theory and Dynamical Systems</i> , 1985 , 5, 341-372 Relativistic ponderomotive Hamiltonian of two interacting electromagnetic waves. <i>Physical Review A</i> , 1985 , 31, 914-920 Strange attractors that are not chaotic. <i>Physica D: Nonlinear Phenomena</i> , 1984 , 13, 261-268 Relativistic ponderomotive Hamiltonian. <i>Physics of Fluids</i> , 1984 , 27, 1996 Final state sensitivity: An obstruction to predictability. <i>Physics Letters, Section A: General, Atomic</i>	2.6	80 7 406 43
17 16 15 14	Super persistent chaotic transients. <i>Ergodic Theory and Dynamical Systems</i> , 1985 , 5, 341-372 Relativistic ponderomotive Hamiltonian of two interacting electromagnetic waves. <i>Physical Review A</i> , 1985 , 31, 914-920 Strange attractors that are not chaotic. <i>Physica D: Nonlinear Phenomena</i> , 1984 , 13, 261-268 Relativistic ponderomotive Hamiltonian. <i>Physics of Fluids</i> , 1984 , 27, 1996 Final state sensitivity: An obstruction to predictability. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1983 , 99, 415-418	2.6 3.3	80 7 406 43 304

9	Harmonic generation of radiation in a steep density profile. Physics of Fluids, 1983, 26, 1904		56	
8	Are Three-Frequency Quasiperiodic Orbits to Be Expected in Typical Nonlinear Dynamical Systems?. <i>Physical Review Letters</i> , 1983 , 51, 339-342	7.4	90	
7	Chaotic Attractors in Crisis. <i>Physical Review Letters</i> , 1982 , 48, 1507-1510	7.4	642	
6	Decay of statistical dependence in chaotic orbits of deterministic mappings. <i>Physical Review A</i> , 1981 , 24, 2829-2830	2.6	12	
5	Parametric decay of extraordinary electromagnetic waves into two upper hybrid plasmons. <i>Journal of Plasma Physics</i> , 1980 , 23, 147-156	2.7	29	
4	Brillouin and Raman scattering of an extraordinary mode in a magnetized plasma. <i>Physics of Fluids</i> , 1980 , 23, 1330		52	
3	Hamiltonian Theory of Ponderomotive Effects of an Electromagnetic Wave in a Nonuniform Magnetic Field. <i>Physical Review Letters</i> , 1979 , 43, 1668-1671	7.4	35	
2	Model-free adaptive nonlinear control of the absorption refrigeration system. Nonlinear Dynamics,1	5	1	
1	On the global dynamical properties of a Fermillam model. <i>Journal of Difference Equations and Applications</i> , 1-10	1	1	