Celso Grebogi

List of Publications by Citations

Source: https://exaly.com/author-pdf/7090635/celso-grebogi-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 296
 20,712
 70
 138

 papers
 citations
 h-index
 g-index

 304
 22,659
 4.4
 6.61

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
296	Controlling chaos. <i>Physical Review Letters</i> , 1990 , 64, 1196-1199	7.4	4288
295	Crises, sudden changes in chaotic attractors, and transient chaos. <i>Physica D: Nonlinear Phenomena</i> , 1983 , 7, 181-200	3.3	930
294	Using small perturbations to control chaos. <i>Nature</i> , 1993 , 363, 411-417	50.4	689
293	Chaotic Attractors in Crisis. <i>Physical Review Letters</i> , 1982 , 48, 1507-1510	7.4	642
292	Critical exponents for crisis-induced intermittency. <i>Physical Review A</i> , 1987 , 36, 5365-5380	2.6	446
291	Communicating with chaos. <i>Physical Review Letters</i> , 1993 , 70, 3031-3034	7.4	415
2 90	Fractal basin boundaries. <i>Physica D: Nonlinear Phenomena</i> , 1985 , 17, 125-153	3.3	407
289	Strange attractors that are not chaotic. <i>Physica D: Nonlinear Phenomena</i> , 1984 , 13, 261-268	3.3	406
288	Controlling chaotic dynamical systems. <i>Physica D: Nonlinear Phenomena</i> , 1992 , 58, 165-192	3.3	314
287	Final state sensitivity: An obstruction to predictability. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1983 , 99, 415-418	2.3	304
286	Using chaos to direct trajectories to targets. <i>Physical Review Letters</i> , 1990 , 65, 3215-3218	7.4	290
285	Unstable periodic orbits and the dimensions of multifractal chaotic attractors. <i>Physical Review A</i> , 1988 , 37, 1711-1724	2.6	258
284	Fractal Basin Boundaries, Long-Lived Chaotic Transients, and Unstable-Unstable Pair Bifurcation. <i>Physical Review Letters</i> , 1983 , 50, 935-938	7.4	250
283	Critical exponent of chaotic transients in nonlinear dynamical systems. <i>Physical Review Letters</i> , 1986 , 57, 1284-1287	7.4	222
282	Experimental control of chaos for communication. <i>Physical Review Letters</i> , 1994 , 73, 1781-1784	7.4	220
281	Grazing bifurcations in impact oscillators. <i>Physical Review E</i> , 1994 , 50, 4427-4444	2.4	211
280	Robust Chaos. <i>Physical Review Letters</i> , 1998 , 80, 3049-3052	7.4	210

279	Predicting catastrophes in nonlinear dynamical systems by compressive sensing. <i>Physical Review Letters</i> , 2011 , 106, 154101	7.4	202	
278	Border collision bifurcations in two-dimensional piecewise smooth maps. <i>Physical Review E</i> , 1999 , 59, 4052-4061	2.4	195	
277	Shadowing of physical trajectories in chaotic dynamics: Containment and refinement. <i>Physical Review Letters</i> , 1990 , 65, 1527-1530	7.4	185	
276	Data based identification and prediction of nonlinear and complex dynamical systems. <i>Physics Reports</i> , 2016 , 644, 1-76	27.7	177	
275	Do numerical orbits of chaotic dynamical processes represent true orbits?. <i>Journal of Complexity</i> , 1987 , 3, 136-145	1.2	176	
274	Riddling Bifurcation in Chaotic Dynamical Systems. <i>Physical Review Letters</i> , 1996 , 77, 55-58	7.4	165	
273	Chemical and biological activity in open flows: A dynamical system approach. <i>Physics Reports</i> , 2005 , 413, 91-196	27.7	161	
272	Bifurcation to chaotic scattering. <i>Physica D: Nonlinear Phenomena</i> , 1990 , 46, 87-121	3.3	155	
271	Controlling chaos in high dimensional systems. <i>Physical Review Letters</i> , 1992 , 69, 3479-3482	7.4	144	
270	Estimating correlation dimension from a chaotic time series: when does plateau onset occur?. <i>Physica D: Nonlinear Phenomena</i> , 1993 , 69, 404-424	3.3	143	
269	Evolution of attractors in quasiperiodically forced systems: From quasiperiodic to strange nonchaotic to chaotic. <i>Physical Review A</i> , 1989 , 39, 2593-2598	2.6	142	
268	Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. <i>Physical Review Letters</i> , 1994 , 73, 1927-1930	7.4	133	
267	Antimonotonicity: inevitable reversals of period-doubling cascades. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1992 , 162, 249-254	2.3	132	
266	How Long Do Numerical Chaotic Solutions Remain Valid?. <i>Physical Review Letters</i> , 1997 , 79, 59-62	7.4	131	
265	Detecting unstable periodic orbits in chaotic experimental data. <i>Physical Review Letters</i> , 1996 , 76, 4705-4	4 7408	130	
264	Map with more than 100 coexisting low-period periodic attractors. <i>Physical Review E</i> , 1996 , 54, 71-81	2.4	125	
263	Metamorphoses of basin boundaries in nonlinear dynamical systems. <i>Physical Review Letters</i> , 1986 , 56, 1011-1014	7.4	125	
262	Plateau onset for correlation dimension: When does it occur?. <i>Physical Review Letters</i> , 1993 , 70, 3872-38	7 54	123	

261	Multistability and the control of complexity. <i>Chaos</i> , 1997 , 7, 597-604	3.3	122
260	Fractal boundaries for exit in Hamiltonian dynamics. <i>Physical Review A</i> , 1988 , 38, 930-938	2.6	120
259	Strange saddles and the dimensions of their invariant manifolds. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1988 , 127, 199-204	2.3	119
258	Intermingled basins and two-state on-off intermittency. <i>Physical Review E</i> , 1995 , 52, R3313-R3316	2.4	118
257	Synchronization of chaotic trajectories using control. <i>Physical Review E</i> , 1993 , 47, 2357-2360	2.4	114
256	Using the sensitive dependence of chaos (the "butterfly effect") to direct trajectories in an experimental chaotic system. <i>Physical Review Letters</i> , 1992 , 68, 2863-2866	7.4	110
255	Quantum manifestations of chaotic scattering. <i>Physical Review Letters</i> , 1992 , 68, 3491-3494	7.4	105
254	Multifractal properties of snapshot attractors of random maps. <i>Physical Review A</i> , 1990 , 41, 784-799	2.6	103
253	Preference of attractors in noisy multistable systems. <i>Physical Review E</i> , 1999 , 59, 5253-60	2.4	100
252	Chaos in a double pendulum. American Journal of Physics, 1992, 60, 491-499	0.7	100
251	Multi-dimensioned intertwined basin boundaries: Basin structure of the kicked double rotor. <i>Physica D: Nonlinear Phenomena</i> , 1987 , 25, 347-360	3.3	96
250	Extracting unstable periodic orbits from chaotic time series data. <i>Physical Review E</i> , 1997 , 55, 5398-541	72.4	92
249	Advection of Active Particles in Open Chaotic Flows. <i>Physical Review Letters</i> , 1998 , 80, 500-503	7.4	90
248	Are Three-Frequency Quasiperiodic Orbits to Be Expected in Typical Nonlinear Dynamical Systems?. <i>Physical Review Letters</i> , 1983 , 51, 339-342	7.4	90
247	Exterior dimension of fat fractals. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1985 , 110, 1-4	2.3	89
246	Self-organization and chaos in a fluidized bed. <i>Physical Review Letters</i> , 1995 , 75, 2308-2311	7.4	88
245	Wireless communication with chaos. <i>Physical Review Letters</i> , 2013 , 110, 184101	7.4	87
244	Coding, Channel Capacity, and Noise Resistance in Communicating with Chaos. <i>Physical Review Letters</i> , 1997 , 79, 3787-3790	7.4	85

(2008-1990)

243	Transition to chaotic scattering. <i>Physical Review A</i> , 1990 , 42, 7025-7040	2.6	85	
242	Quasiperiodically forced dynamical systems with strange nonchaotic attractors. <i>Physica D:</i> Nonlinear Phenomena, 1987 , 26, 277-294	3.3	85	
241	Unstable dimension variability: A source of nonhyperbolicity in chaotic systems. <i>Physica D: Nonlinear Phenomena</i> , 1997 , 109, 81-90	3.3	84	
240	From High Dimensional Chaos to Stable Periodic Orbits: The Structure of Parameter Space. <i>Physical Review Letters</i> , 1997 , 78, 4561-4564	7.4	82	
239	Controlling Hamiltonian chaos. <i>Physical Review E</i> , 1993 , 47, 86-92	2.4	82	
238	Attractors on an N-torus: Quasiperiodicity versus chaos. <i>Physica D: Nonlinear Phenomena</i> , 1985 , 15, 354	-3;7;3	82	
237	Super persistent chaotic transients. <i>Ergodic Theory and Dynamical Systems</i> , 1985 , 5, 341-372	0.9	80	
236	Dimensions of strange nonchaotic attractors. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1989 , 137, 167-172	2.3	76	
235	Network Reconstruction Based on Evolutionary-Game Data via Compressive Sensing. <i>Physical Review X</i> , 2011 , 1,	9.1	74	
234	A geometrical approach to control and controllability of nonlinear dynamical networks. <i>Nature Communications</i> , 2016 , 7, 11323	17.4	73	
233	Noise Filtering in Communication with Chaos. <i>Physical Review Letters</i> , 1997 , 78, 1247-1250	7.4	7 ²	
232	Universal behavior of impact oscillators near grazing incidence. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1995 , 201, 197-204	2.3	72	
231	Controlling complexity. <i>Physical Review Letters</i> , 1995 , 75, 4023-4026	7.4	7 ²	
230	Scaling law for characteristic times of noise-induced crises. <i>Physical Review A</i> , 1991 , 43, 1754-1769	2.6	72	
229	Nonlinear dynamics and quantum entanglement in optomechanical systems. <i>Physical Review Letters</i> , 2014 , 112, 110406	7.4	71	
228	Fractal boundaries in open hydrodynamical flows: Signatures of chaotic saddles. <i>Physical Review E</i> , 1995 , 51, 4076-4088	2.4	71	
227	Correlations of periodic, area-preserving maps. <i>Physica D: Nonlinear Phenomena</i> , 1983 , 6, 375-384	3.3	71	
226	The limit case response of the archetypal oscillator for smooth and discontinuous dynamics. <i>International Journal of Non-Linear Mechanics</i> , 2008 , 43, 462-473	2.8	70	

225	Higher-dimensional targeting. <i>Physical Review E</i> , 1993 , 47, 305-310	2.4	69
224	Combinatorial stresses kill pathogenic Candida species. <i>Medical Mycology</i> , 2012 , 50, 699-709	3.9	67
223	Roundoff-induced periodicity and the correlation dimension of chaotic attractors. <i>Physical Review A</i> , 1988 , 38, 3688-3692	2.6	67
222	Unstable periodic orbits and the dimension of chaotic attractors. <i>Physical Review A</i> , 1987 , 36, 3522-352	42.6	64
221	Using chaos to direct orbits to targets in systems describable by a one-dimensional map. <i>Physical Review A</i> , 1992 , 45, 4165-4168	2.6	63
220	Predicting tipping points in mutualistic networks through dimension reduction. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E639-E647	11.5	62
219	A Novel Multiplex Network-Based Sensor Information Fusion Model and Its Application to Industrial Multiphase Flow System. <i>IEEE Transactions on Industrial Informatics</i> , 2018 , 14, 3982-3988	11.9	61
218	Spatiotemporal dynamics in a dispersively coupled chain of nonlinear oscillators. <i>Physical Review A</i> , 1989 , 39, 4835-4842	2.6	59
217	Mechanisms underlying the exquisite sensitivity of Candida albicans to combinatorial cationic and oxidative stress that enhances the potent fungicidal activity of phagocytes. <i>MBio</i> , 2014 , 5, e01334-14	7.8	57
216	Characterization of the Natural Measure by Unstable Periodic Orbits in Chaotic Attractors. <i>Physical Review Letters</i> , 1997 , 79, 649-652	7.4	57
215	Algebraic decay and fluctuations of the decay exponent in Hamiltonian systems. <i>Physical Review A</i> , 1992 , 46, 4661-4669	2.6	57
214	Noise-Induced Riddling in Chaotic Systems. <i>Physical Review Letters</i> , 1996 , 77, 5047-5050	7.4	56
213	Harmonic generation of radiation in a steep density profile. <i>Physics of Fluids</i> , 1983 , 26, 1904		56
212	Wavelet Multiresolution Complex Network for Analyzing Multivariate Nonlinear Time Series. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1750123	2	55
211	Experimental confirmation of the scaling theory for noise-induced crises. <i>Physical Review Letters</i> , 1991 , 66, 1947-1950	7.4	55
210	Inference of Granger causal time-dependent influences in noisy multivariate time series. <i>Journal of Neuroscience Methods</i> , 2012 , 203, 173-85	3	52
209	Brillouin and Raman scattering of an extraordinary mode in a magnetized plasma. <i>Physics of Fluids</i> , 1980 , 23, 1330		52
208	Using chaos to target stationary states of flows. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1992 , 169, 349-354	2.3	51

207	Multiple coexisting attractors, Basin boundaries and basic sets. <i>Physica D: Nonlinear Phenomena</i> , 1988 , 32, 296-305	3.3	51
206	Controlling chaotic dynamical systems. Systems and Control Letters, 1997, 31, 307-312	2.4	48
205	Modeling of Coupled Chaotic Oscillators. <i>Physical Review Letters</i> , 1999 , 82, 4803-4806	7.4	48
204	Chemical or biological activity in open chaotic flows. <i>Physical Review E</i> , 1999 , 59, 5468-81	2.4	47
203	Modeling of deterministic chaotic systems. <i>Physical Review E</i> , 1999 , 59, 2907-2910	2.4	45
202	Why are chaotic attractors rare in multistable systems?. <i>Physical Review Letters</i> , 2003 , 91, 134102	7.4	44
201	Queueing phase transition: theory of translation. <i>Physical Review Letters</i> , 2009 , 102, 198104	7.4	43
200	Ergodic adiabatic invariants of chaotic systems. <i>Physical Review Letters</i> , 1987 , 59, 1173-1176	7.4	43
199	The goodness of ergodic adiabatic invariants. <i>Journal of Statistical Physics</i> , 1987 , 49, 511-550	1.5	43
198	Relativistic ponderomotive Hamiltonian. <i>Physics of Fluids</i> , 1984 , 27, 1996		43
197	Integrative Model of Oxidative Stress Adaptation in the Fungal Pathogen Candida albicans. <i>PLoS ONE</i> , 2015 , 10, e0137750	3.7	40
197 196		3·7 7·4	40
	ONE, 2015 , 10, e0137750		
196	ONE, 2015 , 10, e0137750 Double crises in two-parameter dynamical systems. <i>Physical Review Letters</i> , 1995 , 75, 2478-2481 Quantum manifestation of a synchronization transition in optomechanical systems. <i>Physical Review</i>	7.4	39
196	ONE, 2015 , 10, e0137750 Double crises in two-parameter dynamical systems. <i>Physical Review Letters</i> , 1995 , 75, 2478-2481 Quantum manifestation of a synchronization transition in optomechanical systems. <i>Physical Review A</i> , 2014 , 90,	7·4 2.6	39
196 195 194	ONE, 2015, 10, e0137750 Double crises in two-parameter dynamical systems. <i>Physical Review Letters</i> , 1995, 75, 2478-2481 Quantum manifestation of a synchronization transition in optomechanical systems. <i>Physical Review A</i> , 2014, 90, Stabilizing chaotic-scattering trajectories using control. <i>Physical Review E</i> , 1993, 48, 709-717	7·4 2.6 2.4	39 38 38
196 195 194 193	ONE, 2015, 10, e0137750 Double crises in two-parameter dynamical systems. Physical Review Letters, 1995, 75, 2478-2481 Quantum manifestation of a synchronization transition in optomechanical systems. Physical Review A, 2014, 90, Stabilizing chaotic-scattering trajectories using control. Physical Review E, 1993, 48, 709-717 Experimental validation of wireless communication with chaos. Chaos, 2016, 26, 083117	7.4 2.6 2.4	39 38 38 38

189	Scaling behavior of windows in dissipative dynamical systems. <i>Physical Review Letters</i> , 1985 , 54, 1095-10	0984	37
188	Natural synchronization in power-grids with anti-correlated units. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2013 , 18, 1035-1046	3.7	36
187	Dynamical properties of a simple mechanical system with a large number of coexisting periodic attractors. <i>Chaos, Solitons and Fractals,</i> 1998 , 9, 171-180	9.3	36
186	Vertices in parameter space: Double crises which destroy chaotic attractors. <i>Physical Review Letters</i> , 1993 , 71, 1359-1362	7.4	36
185	Closed-Loop Control of Complex Networks: A Trade-Off between Time and Energy. <i>Physical Review Letters</i> , 2017 , 119, 198301	7.4	35
184	Experimental confirmation of the theory for critical exponents of crisis. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1991 , 153, 105-109	2.3	35
183	Theory of first order phase transitions for chaotic attractors of nonlinear dynamical systems. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1989 , 135, 343-348	2.3	35
182	Hamiltonian Theory of Ponderomotive Effects of an Electromagnetic Wave in a Nonuniform Magnetic Field. <i>Physical Review Letters</i> , 1979 , 43, 1668-1671	7.4	35
181	Cascade failure analysis of power grid using new load distribution law and node removal rule. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2016 , 442, 239-251	3.3	34
180	Bifurcation rigidity. <i>Physica D: Nonlinear Phenomena</i> , 1999 , 129, 35-56	3.3	34
180 179	Bifurcation rigidity. <i>Physica D: Nonlinear Phenomena</i> , 1999 , 129, 35-56 Extensively chaotic motion in electrostatically driven nanowires and applications. <i>Nano Letters</i> , 2010 , 10, 406-13	3.3	34
	Extensively chaotic motion in electrostatically driven nanowires and applications. <i>Nano Letters</i> ,		
179	Extensively chaotic motion in electrostatically driven nanowires and applications. <i>Nano Letters</i> , 2010 , 10, 406-13 A chaotic spread spectrum system for underwater acoustic communication. <i>Physica A: Statistical</i>	11.5	
179 178	Extensively chaotic motion in electrostatically driven nanowires and applications. <i>Nano Letters</i> , 2010 , 10, 406-13 A chaotic spread spectrum system for underwater acoustic communication. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2017 , 478, 77-92	11.53.37.4	33 32
179 178 177	Extensively chaotic motion in electrostatically driven nanowires and applications. <i>Nano Letters</i> , 2010 , 10, 406-13 A chaotic spread spectrum system for underwater acoustic communication. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2017 , 478, 77-92 Chiral scars in chaotic Dirac fermion systems. <i>Physical Review Letters</i> , 2013 , 110, 064102	11.53.37.4	33 32 32
179 178 177	Extensively chaotic motion in electrostatically driven nanowires and applications. <i>Nano Letters</i> , 2010 , 10, 406-13 A chaotic spread spectrum system for underwater acoustic communication. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2017 , 478, 77-92 Chiral scars in chaotic Dirac fermion systems. <i>Physical Review Letters</i> , 2013 , 110, 064102 Chaotic attractors on a 3-torus, and torus break-up. <i>Physica D: Nonlinear Phenomena</i> , 1989 , 39, 299-314 Scaling behavior of transition to chaos in quasiperiodically driven dynamical systems. <i>Physical</i>	11.5 3·3 7·4 3·3	33 32 32 32
179 178 177 176	Extensively chaotic motion in electrostatically driven nanowires and applications. <i>Nano Letters</i> , 2010 , 10, 406-13 A chaotic spread spectrum system for underwater acoustic communication. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2017 , 478, 77-92 Chiral scars in chaotic Dirac fermion systems. <i>Physical Review Letters</i> , 2013 , 110, 064102 Chaotic attractors on a 3-torus, and torus break-up. <i>Physica D: Nonlinear Phenomena</i> , 1989 , 39, 299-314 Scaling behavior of transition to chaos in quasiperiodically driven dynamical systems. <i>Physical Review E</i> , 1996 , 54, 6070-6073	11.5 3·3 7·4 3·3	33 32 32 32 31

(2015-2004)

171	MULTISTABILITY, BASIN BOUNDARY STRUCTURE, AND CHAOTIC BEHAVIOR IN A SUSPENSION BRIDGE MODEL. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2004 , 14, 927-950	2	29	
170	Unstable dimension variability and synchronization of chaotic systems. <i>Physical Review E</i> , 2000 , 62, 462	-8.4	29	
169	Critical Exponent for Gap Filling at Crisis. <i>Physical Review Letters</i> , 1996 , 77, 3102-3105	7.4	29	
168	Parametric decay of extraordinary electromagnetic waves into two upper hybrid plasmons. <i>Journal of Plasma Physics</i> , 1980 , 23, 147-156	2.7	29	
167	Erosion of the safe basin for the transversal oscillations of a suspension bridge. <i>Chaos, Solitons and Fractals</i> , 2003 , 18, 829-841	9.3	28	
166	Integrated chaotic communication scheme. <i>Physical Review E</i> , 2000 , 62, 4835-45	2.4	28	
165	Geometric mechanism for antimonotonicity in scalar maps with two critical points. <i>Physical Review E</i> , 1993 , 48, 1676-1682	2.4	28	
164	Phase-locking in quasiperiodically forced systems. <i>Physics Reports</i> , 1997 , 290, 11-25	27.7	27	
163	Topological scaling and gap filling at crisis. <i>Physical Review E</i> , 2000 , 61, 5019-32	2.4	27	
162	Granger causal time-dependent source connectivity in the somatosensory network. <i>Scientific Reports</i> , 2015 , 5, 10399	4.9	26	
161	Crisis in chaotic scattering. <i>Physical Review Letters</i> , 1993 , 71, 2212-2215	7.4	26	
160	DETERMINATION OF CRISIS PARAMETER VALUES BY DIRECT OBSERVATION OF MANIFOLD TANGENCIES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1992, 02, 383-396	2	26	
159	Simplicial approximation of Poincarlmaps of differential equations. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1987 , 124, 59-64	2.3	26	
158	Efficient switching between controlled unstable periodic orbits in higher dimensional chaotic systems. <i>Physical Review E</i> , 1995 , 51, 4169-4172	2.4	25	
157	Universal data-based method for reconstructing complex networks with binary-state dynamics. <i>Physical Review E</i> , 2017 , 95, 032303	2.4	24	
156	Unstable dimension variability in coupled chaotic systems. <i>Physical Review E</i> , 1999 , 60, 5445-54	2.4	24	
155	Relativistic quantum chaos. <i>Physics Reports</i> , 2018 , 753, 1-128	27.7	24	
154	Universal formalism of Fano resonance. <i>AIP Advances</i> , 2015 , 5, 017137	1.5	23	

153	From START to FINISH: the influence of osmotic stress on the cell cycle. <i>PLoS ONE</i> , 2013 , 8, e68067	3.7	23
152	Emergence of multicluster chimera states. <i>Scientific Reports</i> , 2015 , 5, 12988	4.9	22
151	Riddling of Chaotic Sets in Periodic Windows. <i>Physical Review Letters</i> , 1999 , 83, 2926-2929	7.4	22
150	Synchronization of spatiotemporal chaotic systems by feedback control. <i>Physical Review E</i> , 1994 , 50, 1894-1899	2.4	22
149	Chaos-based wireless communication resisting multipath effects. <i>Physical Review E</i> , 2017 , 96, 032226	2.4	21
148	Reactive particles in random flows. <i>Physical Review Letters</i> , 2004 , 92, 174101	7.4	21
147	Basin bifurcation in quasiperiodically forced systems. <i>Physical Review E</i> , 1998 , 58, 3060-3066	2.4	21
146	. IEEE Transactions on Vehicular Technology, 2019 , 68, 578-591	6.8	21
145	Secure Communication Based on Hyperchaotic Chen System with Time-Delay. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2017 , 27, 1750076	2	20
144	Relativistic quantum chaos-An emergent interdisciplinary field. <i>Chaos</i> , 2018 , 28, 052101	3.3	20
143	Harnessing quantum transport by transient chaos. <i>Chaos</i> , 2013 , 23, 013125	3.3	20
142	Multiparameter control of chaos. <i>Physical Review E</i> , 1995 , 52, 3553-3557	2.4	20
141	Universal grazing bifurcations in impact oscillators. <i>Physical Review E</i> , 1996 , 53, 134-139	2.4	20
140	Crisis and enhancement of chaotic scattering. <i>Physical Review E</i> , 1994 , 49, 3761-3770	2.4	20
139	Multiplex Limited Penetrable Horizontal Visibility Graph from EEG Signals for Driver Fatigue Detection. <i>International Journal of Neural Systems</i> , 2019 , 29, 1850057	6.2	20
138	Chaos-Based Underwater Communication With Arbitrary Transducers and Bandwidth. <i>Applied Sciences (Switzerland)</i> , 2018 , 8, 162	2.6	20
137	Dynamics of delay induced composite multi-scroll attractor and its application in encryption. <i>International Journal of Non-Linear Mechanics</i> , 2017 , 94, 334-342	2.8	19
136	Topology of high-dimensional chaotic scattering. <i>Physical Review E</i> , 2000 , 62, 6421-8	2.4	19

135	Mutual information rate and bounds for it. <i>PLoS ONE</i> , 2012 , 7, e46745	3.7	18
134	Escaping from nonhyperbolic chaotic attractors. <i>Physical Review Letters</i> , 2004 , 92, 234101	7.4	18
133	Massive bifurcation of chaotic scattering. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1991 , 153, 21-26	2.3	18
132	A Coincidence-Filtering-Based Approach for CNNs in EEG-Based Recognition. <i>IEEE Transactions on Industrial Informatics</i> , 2020 , 16, 7159-7167	11.9	18
131	Basins of Attraction of Periodic Oscillations in Suspension Bridges. <i>Nonlinear Dynamics</i> , 2004 , 37, 207-27	26	17
130	Characterizing riddled fractal sets. <i>Physical Review E</i> , 1996 , 53, 1371-1374	2.4	17
129	Control and prediction for blackouts caused by frequency collapse in smart grids. <i>Chaos</i> , 2016 , 26, 0931	1393	17
128	Machine learning prediction of critical transition and system collapse. <i>Physical Review Research</i> , 2021 , 3,	3.9	17
127	Tumour chemotherapy strategy based on impulse control theory. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2017 , 375,	3	16
126	Digital underwater communication with chaos. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2019 , 73, 14-24	3.7	16
125	Conductance fluctuations in graphene systems: The relevance of classical dynamics. <i>Physical Review B</i> , 2012 , 85,	3.3	16
124	Driving trajectories in complex systems. <i>Physical Review E</i> , 1999 , 59, 4062-4070	2.4	16
123	Superpersistent currents and whispering gallery modes in relativistic quantum chaotic systems. <i>Scientific Reports</i> , 2015 , 5, 8963	4.9	15
122	Exploiting the natural redundancy of chaotic signals in communication systems. <i>Physical Review Letters</i> , 2000 , 85, 2629-32	7.4	15
121	Transient chaos - a resolution of breakdown of quantum-classical correspondence in optomechanics. <i>Scientific Reports</i> , 2016 , 6, 35381	4.9	15
120	Spike-burst chimera states in an adaptive exponential integrate-and-fire neuronal network. <i>Chaos</i> , 2019 , 29, 043106	3.3	14
119	Resiliently evolving supply-demand networks. <i>Physical Review E</i> , 2014 , 89, 012801	2.4	14
118	Abnormal electron paths induced by Klein tunneling in graphene quantum point contacts. <i>Physical Review B</i> , 2011 , 84,	3.3	14

117	Communication through chaotic modeling of languages. <i>Physical Review E</i> , 2000 , 61, 3590-600	2.4	14
116	Complexity in Hamiltonian-driven dissipative chaotic dynamical systems. <i>Physical Review E</i> , 1996 , 54, 4667-4675	2.4	14
115	Controlling chaos in a temporally irregular environment. <i>Physica D: Nonlinear Phenomena</i> , 1994 , 74, 386	-394	14
114	Temporal crossover from classical to quantum behavior: a Markov-chain approach. <i>Physics Letters, Section A: General, Atomic and Solid State Physics,</i> 1993 , 173, 148-152	2.3	14
113	Quasiperiodic forcing and the observability of strange nonchaotic attractors. <i>Physica Scripta</i> , 1989 , 40, 442-444	2.6	14
112	Comment on "Sensitive dependence on parameters in nonlinear dynamics" and on "Fat fractals on the energy surface". <i>Physical Review Letters</i> , 1986 , 56, 266	7.4	14
111	Reconstructing direct and indirect interactions in networked public goods game. <i>Scientific Reports</i> , 2016 , 6, 30241	4.9	13
110	Length Scales of Clustering in Granular Gases. <i>Physical Review Letters</i> , 1999 , 82, 4819-4822	7.4	13
109	Quasiperiodicity and suppression of multistability in nonlinear dynamical systems. <i>European Physical Journal: Special Topics</i> , 2017 , 226, 1703-1719	2.3	12
108	Strange nonchaotic attractors in a nonsmooth dynamical system. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2019 , 78, 104858	3.7	12
107	A matter of life or death: modeling DNA damage and repair in bacteria. <i>Biophysical Journal</i> , 2011 , 100, 814-21	2.9	12
106	Computing the measure of nonattracting chaotic sets. <i>Physica D: Nonlinear Phenomena</i> , 1997 , 108, 1-11	3.3	12
105	Control and applications of chaos. <i>Journal of the Franklin Institute</i> , 1997 , 334, 1115-1146	4	12
104	Topology of Windows in the High-Dimensional Parameter Space of Chaotic Maps. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2003 , 13, 2681-2688	2	12
103	Decay of statistical dependence in chaotic orbits of deterministic mappings. <i>Physical Review A</i> , 1981 , 24, 2829-2830	2.6	12
102	Overarching framework for data-based modelling. <i>Europhysics Letters</i> , 2014 , 105, 30004	1.6	11
101	Collective almost synchronisation in complex networks. <i>PLoS ONE</i> , 2012 , 7, e48118	3.7	11
100	Structure and function in flow networks. <i>Europhysics Letters</i> , 2013 , 101, 68001	1.6	11

99	RIDDLED BASINS AND UNSTABLE DIMENSION VARIABILITY IN CHAOTIC SYSTEMS WITH AND WITHOUT SYMMETRY. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2001 , 11, 2689-2698	2	11
98	Universal behavior in the parametric evolution of chaotic saddles. <i>Physical Review E</i> , 1999 , 59, 5261-5	2.4	11
97	Metamorphosis of chaotic saddle. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1999 , 259, 445-450	2.3	11
96	Tracer dynamics in a flow of driven vortices. <i>Physical Review E</i> , 1999 , 59, 1605-1614	2.4	11
95	Gaussian orthogonal ensemble statistics in graphene billiards with the shape of classically integrable billiards. <i>Physical Review E</i> , 2016 , 94, 062214	2.4	11
94	Crisis-induced unstable dimension variability in a dynamical system. <i>Physics Letters, Section A:</i> General, Atomic and Solid State Physics, 2008 , 372, 5569-5574	2.3	10
93	Broadening of spectral peaks at the merging of chaotic bands in period-doubling systems. <i>Physical Review A</i> , 1986 , 34, 2248-2254	2.6	10
92	Critical exponents for power-spectra scaling at mergings of chaotic bands. <i>Physical Review A</i> , 1988 , 38, 463-468	2.6	10
91	Self-adaptation of chimera states. <i>Physical Review E</i> , 2019 , 99, 010201	2.4	9
90	Experimental Phase Separation Differential Chaos Shift Keying Wireless Communication Based on Matched Filter. <i>IEEE Access</i> , 2019 , 7, 25274-25287	3.5	9
89	Chaotic attractor of the normal form map for grazing bifurcations of impact oscillators. <i>Physica D: Nonlinear Phenomena</i> , 2019 , 398, 164-170	3.3	9
88	Entropy-based generating Markov partitions for complex systems. <i>Chaos</i> , 2018 , 28, 033611	3.3	9
87	Are the fractal skeletons the explanation for the narrowing of arteries due to cell trapping in a disturbed blood flow?. <i>Computers in Biology and Medicine</i> , 2012 , 42, 276-81	7	9
86	Quantum chaotic scattering in graphene systems in the absence of invariant classical dynamics. <i>Physical Review E</i> , 2013 , 87, 052908	2.4	9
85	Bubbling and riddling of higher-dimensional attractors. <i>Chaos, Solitons and Fractals</i> , 2003 , 17, 61-66	9.3	9
84	OBSTRUCTION TO DETERMINISTIC MODELING OF CHAOTIC SYSTEMS WITH AN INVARIANT SUBSPACE. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2000 , 10, 683-693	2	9
83	Predictability in time series. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1995 , 209, 327-332	2.3	9
82	Locally coupled evolution of wave and particle distribution in general magnetoplasma geometry. Physics Letters, Section A: General, Atomic and Solid State Physics, 1985, 111, 19-21	2.3	9

81	Tipping point and noise-induced transients in ecological networks. <i>Journal of the Royal Society Interface</i> , 2020 , 17, 20200645	4.1	9
80	A Graph-Temporal Fused Dual-Input Convolutional Neural Network for Detecting Sleep Stages from EEG Signals. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2021 , 68, 777-781	3.5	9
79	Synaptic Plasticity and Spike Synchronisation in Neuronal Networks. <i>Brazilian Journal of Physics</i> , 2017 , 47, 678-688	1.2	8
78	Conductance fluctuations in chaotic bilayer graphene quantum dots. <i>Physical Review E</i> , 2015 , 92, 01291	82.4	8
77	UNCOVERING MISSING SYMBOLS IN COMMUNICATION WITH FILTERED CHAOTIC SIGNALS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012 , 22, 1250199	2	8
76	Dynamically multilayered visual system of the multifractal fly. <i>Physical Review Letters</i> , 2006 , 97, 178102	7.4	8
75	Stability properties of nonhyperbolic chaotic attractors with respect to noise. <i>Physical Review Letters</i> , 2004 , 93, 250603	7.4	8
74	Crisis control: Preventing chaos-induced capsizing of a ship. <i>Physical Review E</i> , 1994 , 50, 4228-4230	2.4	8
73	Cubic maps as models of two-dimensional antimonotonicity. <i>Chaos, Solitons and Fractals</i> , 1991 , 1, 137-1	49 .3	8
72	Scaling of fractal basin boundaries near intermittency transitions to chaos. <i>Physical Review A</i> , 1989 , 40, 1576-1581	2.6	8
71	Fractal Basin Boundaries with Unique Dimensiona. <i>Annals of the New York Academy of Sciences</i> , 1987 , 497, 117-126	6.5	8
70	Weak connections form an infinite number of patterns in the brain. Scientific Reports, 2017, 7, 46472	4.9	7
69	Level spacing statistics for two-dimensional massless Dirac billiards. <i>Chinese Physics B</i> , 2014 , 23, 070507	1.2	7
68	COLOR MAP OF LYAPUNOV EXPONENTS OF INVARIANT SETS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1999 , 09, 1459-1463	2	7
67	Relativistic ponderomotive Hamiltonian of two interacting electromagnetic waves. <i>Physical Review A</i> , 1985 , 31, 914-920	2.6	7
66	Rate-dependent bifurcation dodging in a thermoacoustic system driven by colored noise. <i>Nonlinear Dynamics</i> , 2021 , 104, 2733-2743	5	7
65	Multilayer brain network combined with deep convolutional neural network for detecting major depressive disorder. <i>Nonlinear Dynamics</i> , 2020 , 102, 667-677	5	6
64	Noise-enabled species recovery in the aftermath of a tipping point. <i>Physical Review E</i> , 2020 , 101, 01220	62.4	6

(2018-2003)

63	Communication-Based on Topology Preservation of Chaotic Dynamics. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2003 , 13, 2551-2560	2	6
62	Output functions and fractal dimensions in dynamical systems. <i>Physical Review Letters</i> , 2001 , 86, 2778	-8 1 7.4	6
61	Enhancement of limiting current of charged particle beams by ponderomotive energy. <i>Physics of Fluids</i> , 1988 , 31, 1277		6
60	Guiding center Hamiltonian theory of free-electron lasers. <i>Physics of Fluids</i> , 1985 , 28, 1984		6
59	Radio-Wave Communication With Chaos. IEEE Access, 2020, 8, 167019-167026	3.5	6
58	One-Way Hash Function Based on Delay-Induced Hyperchaos. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2020 , 30, 2050020	2	5
57	Multistability in a quasiperiodically forced piecewise smooth dynamical system. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2020 , 84, 105165	3.7	5
56	Hyperchaos synchronization using univariate impulse control. <i>Physical Review E</i> , 2019 , 100, 052215	2.4	5
55	Existence of Chaos in the Chen System with Linear Time-Delay Feedback. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2019 , 29, 1950114	2	4
54	Quantitative assessment of cerebral connectivity deficiency and cognitive impairment in children with prenatal alcohol exposure. <i>Chaos</i> , 2019 , 29, 041101	3.3	4
53	Diffusion in randomly perturbed dissipative dynamics. <i>Europhysics Letters</i> , 2014 , 108, 40002	1.6	4
52	A syringe-focused ultrasound device for simultaneous injection of DNA and gene transfer. <i>Journal of Gene Medicine</i> , 2012 , 14, 54-61	3.5	4
51	Approximate solution for frequency synchronization in a finite-size Kuramoto model. <i>Physical Review E</i> , 2015 , 92, 062808	2.4	4
50	RECONSTRUCTION OF INFORMATION-BEARING CHAOTIC SIGNALS IN ADDITIVE WHITE GAUSSIAN NOISE: PERFORMANCE ANALYSIS AND EVALUATION. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2001, 11, 2631-2635	2	4
49	Linear Scaling Laws in Bifurcations of Scalar Maps. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1994 , 49, 1207-1211	1.4	4
48	Artificial intelligence enhances the performance of chaotic baseband wireless communication. <i>IET Communications</i> , 2021 , 15, 1467	1.3	4
47	Emergence of transient chaos and intermittency in machine learning. <i>Journal of Physics Complexity</i> , 2021 , 2, 035014	1.8	4
46	Link Prediction Investigation of Dynamic Information Flow in Epilepsy. <i>Journal of Healthcare Engineering</i> , 2018 , 2018, 8102597	3.7	4

45	Chaos Generation With Impulse Control: Application to Non-Chaotic Systems and Circuit Design. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2021 , 68, 3012-3022	3.9	4
44	The existence of strange nonchaotic attractors in the quasiperiodically forced Ricker family. <i>Chaos</i> , 2020 , 30, 053124	3.3	3
43	Nonlinear dynamics in the flexible shaft rotating lifting system of silicon crystal puller using Czochralski method. <i>Nonlinear Dynamics</i> , 2020 , 102, 771-784	5	3
42	Topological horseshoe in a single-scroll Chen system with time delay. <i>Chaos, Solitons and Fractals</i> , 2020 , 132, 109593	9.3	3
41	One node driving synchronisation. <i>Scientific Reports</i> , 2015 , 5, 18091	4.9	3
40	Unstable dimension variability and codimension-one bifurcations of two-dimensional maps. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2004 , 321, 244-251	2.3	3
39	Lai and grebogi reply:. <i>Physical Review Letters</i> , 2000 , 85, 473	7.4	3
38	Effect of electromagnetic fields on charged particle beam limiting current. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1989 , 135, 280-283	2.3	3
37	Vlasov susceptibility of relativistic magnetized plasma and application to free-electron lasers. <i>Physics of Fluids</i> , 1986 , 29, 1748		3
36	Multiattention Adaptation Network for Motor Imagery Recognition. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2021 , 1-13	7.3	3
35	Some elements for a history of the dynamical systems theory. <i>Chaos</i> , 2021 , 31, 053110	3.3	3
34	Parameter impulse control of chaos in crystal growth process. <i>Journal of Crystal Growth</i> , 2021 , 563, 1260	07. 0	3
33	Control of tipping points in stochastic mutualistic complex networks. <i>Chaos</i> , 2021 , 31, 023118	3.3	3
32	Multivariate empirical mode decomposition and multiscale entropy analysis of EEG signals from SSVEP-based BCI system. <i>Europhysics Letters</i> , 2018 , 122, 40010	1.6	2
31	Optimized spectral estimation for nonlinear synchronizing systems. <i>Physical Review E</i> , 2014 , 89, 032912	2.4	2
30	Optimality in DNA repair. <i>Journal of Theoretical Biology</i> , 2012 , 292, 39-43	2.3	2
29	General analytical solutions for DC/AC circuit-network analysis. <i>European Physical Journal: Special Topics</i> , 2017 , 226, 1829-1844	2.3	2
28	THE EMERGENCE AND EVOLUTION OF COOPERATION ON COMPLEX NETWORKS. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2012 , 22, 1250228	2	2

27	Shadowability of Chaotic Dynamical Systems. <i>Handbook of Dynamical Systems</i> , 2002 , 2, 313-344		2
26	Ponderomotive confinement of charged-particle beams in a cylindrical waveguide. <i>Physical Review A</i> , 1986 , 34, 4083-4090	2.6	2
25	Simulating a chaotic process. Brazilian Journal of Physics, 2005, 35, 139-147	1.2	2
24	Rate-dependent tipping and early warning in a thermoacoustic system under extreme operating environment. <i>Chaos</i> , 2021 , 31, 113115	3.3	2
23	Sudden regime shifts after apparent stasis: Comment on "Long transients in ecology: Theory and applications" by Andrew Morozov et al. <i>Physics of Life Reviews</i> , 2020 , 32, 41-43	2.1	2
22	Community control in cellular protein production: consequences for amino acid starvation. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2015 , 373,	3	1
21	Dynamical collapse of trajectories. <i>Europhysics Letters</i> , 2012 , 98, 20001	1.6	1
20	FEEDBACK SYNCHRONIZATION USING POLE-PLACEMENT CONTROL. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2000 , 10, 2611-2617	2	1
19	Model-free adaptive nonlinear control of the absorption refrigeration system. Nonlinear Dynamics,1	5	1
18	On the global dynamical properties of a Fermillam model. <i>Journal of Difference Equations and Applications</i> ,1-10	1	1
17	Double-Stream Differential Chaos Shift Keying Communications Exploiting Chaotic Shape Forming Filter and Sequence Mapping. <i>IEEE Transactions on Wireless Communications</i> , 2021 , 1-1	9.6	1
16	REsler-network with time delay: Univariate impulse pinning synchronization. <i>Chaos</i> , 2020 , 30, 123101	3.3	1
15	STRANGE NONCHAOTIC ATTRACTORS AND MULTISTABILITY IN A TWO-DEGREE-OF-FREEDOM QUASIPERIODICALLY FORCED VIBRO-IMPACT SYSTEM. <i>Fractals</i> , 2021 , 29, 2150103	3.2	1
14	Complex Network Analysis of Experimental EEG Signals for Decoding Brain Cognitive State. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2021 , 68, 531-535	3.5	1
13	Hausdorff dimension of chaotic attractors in a class of nonsmooth systems. <i>Chaos, Solitons and Fractals</i> , 2021 , 151, 111218	9.3	1
12	Mathematical model of brain tumour growth with drug resistance. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2021 , 103, 106013	3.7	1
11	The Existence of AubryMather sets for the FermiDlam Model. <i>Qualitative Theory of Dynamical Systems</i> , 2021 , 20, 1	0.8	1
10	Frequency stability in modern power network from complex network viewpoint. <i>Physica A:</i> Statistical Mechanics and Its Applications, 2020 , 545, 123558	3.3	O

9	Detecting gas-liquid two-phase flow pattern determinism from experimental signals with missing ordinal patterns. <i>Chaos</i> , 2020 , 30, 093102	3.3	О
8	Bi-directional impulse chaos control in crystal growth. <i>Chaos</i> , 2021 , 31, 053106	3.3	О
7	Quasi-periodic solutions and homoclinic bifurcation in an impact inverted pendulum. <i>Physica D: Nonlinear Phenomena</i> , 2022 , 434, 133210	3.3	O
6	Uncovering hidden flows in physical networks. <i>Europhysics Letters</i> , 2017 , 118, 58001	1.6	
5	Methods for removal of unwanted signals from gravity time-series: Comparison using linear techniques complemented with analysis of system dynamics. <i>Chaos</i> , 2017 , 27, 103126	3.3	
4	Nonlinear Dynamics: A Brief Introduction 2011 , 331-338		
3	IEEE Access Special Section Editorial: Complex Network Analysis and Engineering in 5G and Beyond Toward 6G. <i>IEEE Access</i> , 2020 , 8, 227751-227755	3.5	
2	Invariant torus and its destruction for an oscillator with dry friction. Nonlinear Dynamics, 2021, 104, 34	6 7 5	
1	Strange Nonchaotic Attractors From a Family of Quasiperiodically Forced Piecewise Linear Maps. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2021 , 31, 2150111	2	