
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7090203/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pathogenesis, diagnosis and treatment of Rasmussen encephalitis: A European consensus statement. Brain, 2005, 128, 454-471.	3.7	490
2	Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurology, The, 2017, 16, 976-986.	4.9	472
3	Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Annals of Neurology, 2007, 61, 219-227.	2.8	450
4	An international, phase III, randomized trial of mycophenolate mofetil in myasthenia gravis. Neurology, 2008, 71, 400-406.	1.5	270
5	Expression of transforming growth factor-beta 1 in dystrophic patient muscles correlates with fibrosis. Pathogenetic role of a fibrogenic cytokine Journal of Clinical Investigation, 1995, 96, 1137-1144.	3.9	259
6	A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis. Journal of Autoimmunity, 2014, 52, 139-145.	3.0	244
7	Cytokines and chemokines are both expressed by human myoblasts: possible relevance for the immune pathogenesis of muscle inflammation International Immunology, 2000, 12, 1329-1335.	1.8	204
8	Safety, efficacy, and tolerability of efgartigimod in patients with generalised myasthenia gravis (ADAPT): a multicentre, randomised, placebo-controlled, phase 3 trial. Lancet Neurology, The, 2021, 20, 526-536.	4.9	194
9	Importance of Shank3 Protein in Regulating Metabotropic Glutamate Receptor 5 (mGluR5) Expression and Signaling at Synapses. Journal of Biological Chemistry, 2011, 286, 34839-34850.	1.6	180
10	Randomized phase 2 study of FcRn antagonist efgartigimod in generalized myasthenia gravis. Neurology, 2019, 92, e2661-e2673.	1.5	169
11	Longâ€ŧerm safety and efficacy of eculizumab in generalized myasthenia gravis. Muscle and Nerve, 2019, 60, 14-24.	1.0	162
12	Experience with immunomodulatory treatments in Rasmussen's encephalitis. Neurology, 2003, 61, 1807-1810.	1.5	161
13	GluR3 antibodies: Prevalence in focal epilepsy but no specificity for Rasmussen's encephalitis. Neurology, 2001, 57, 1511-1514.	1.5	159
14	Antibodies against GluR3 peptides are not specific for Rasmussen's encephalitis but are also present in epilepsy patients with severe, early onset disease and intractable seizures. Journal of Neuroimmunology, 2002, 131, 179-185.	1.1	151
15	Analysis of T cell receptor repertoire of muscle-infiltrating T lymphocytes in polymyositis. Restricted V alpha/beta rearrangements may indicate antigen-driven selection Journal of Clinical Investigation, 1993, 91, 2880-2886.	3.9	143
16	Long-term effect of thymectomy plus prednisone versus prednisone alone in patients with non-thymomatous myasthenia gravis: 2-year extension of the MGTX randomised trial. Lancet Neurology, The, 2019, 18, 259-268.	4.9	139
17	Myasthenia Gravis (MG): Epidemiological Data and Prognostic Factors. Annals of the New York Academy of Sciences, 2003, 998, 413-423.	1.8	135
18	When myasthenia gravis is deemed refractory: clinical signposts and treatment strategies. Therapeutic Advances in Neurological Disorders, 2018, 11, 175628561774913.	1.5	129

#	Article	IF	CITATIONS
19	Muscle inflammation and MHC class I up-regulation in muscular dystrophy with lack of dysferlin: an immunopathological study. Journal of Neuroimmunology, 2003, 142, 130-136.	1.1	126
20	Video-assisted thoracoscopic extended thymectomy and extended transsternal thymectomy (T-3b) in non-thymomatous myasthenia gravis patients: remission after 6 years of follow-up. Journal of the Neurological Sciences, 2003, 212, 31-36.	0.3	126
21	Transforming growth factor-β1 and fibrosis in congenital muscular dystrophies. Neuromuscular Disorders, 1999, 9, 28-33.	0.3	122
22	Recommendations for myasthenia gravis clinical trials. Muscle and Nerve, 2012, 45, 909-917.	1.0	122
23	Prognosis of myasthenia gravis: A multicenter follow-up study of 844 patients. Journal of the Neurological Sciences, 1991, 106, 213-220.	0.3	116
24	lmmunomodulation of TGF-beta1 in mdx mouse inhibits connective tissue proliferation in diaphragm but increases inflammatory response: Implications for antifibrotic therapy. Journal of Neuroimmunology, 2006, 175, 77-86.	1.1	114
25	Azathioprine as a single drug or in combination with steroids in the treatment of myasthenia gravis. Journal of Neurology, 1988, 235, 449-453.	1.8	113
26	Guidance for the management of myasthenia gravis (MG) and Lambert-Eaton myasthenic syndrome (LEMS) during the COVID-19 pandemic. Journal of the Neurological Sciences, 2020, 412, 116803.	0.3	110
27	A multicentre follow-up study of 1152 patients with myasthenia gravis in Italy. Journal of Neurology, 1990, 237, 339-344.	1.8	108
28	Long-term selective IgG immunoadsorption improves Rasmussen's encephalitis. Neurology, 1998, 51, 302-305.	1.5	106
29	Factors related to difficulties with employment in patients with multiple sclerosis. International Journal of Rehabilitation Research, 2013, 36, 105-111.	0.7	106
30	Myasthenia gravis. Neurology, 1984, 34, 170-170.	1.5	106
31	Epsteinâ€Barr virus persistence and reactivation in myasthenia gravis thymus. Annals of Neurology, 2010, 67, 726-738.	2.8	103
32	Nusinersen safety and effects on motor function in adult spinal muscular atrophy type 2 and 3. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1166-1174.	0.9	99
33	<scp>LRP</scp> 4 antibodies in serum and <scp>CSF</scp> from amyotrophic lateral sclerosis patients. Annals of Clinical and Translational Neurology, 2014, 1, 80-87.	1.7	94
34	Decorin and biglycan expression is differentially altered in several muscular dystrophies. Brain, 2005, 128, 2546-2555.	3.7	87
35	COVID-19-associated risks and effects in myasthenia gravis (CARE-MG). Lancet Neurology, The, 2020, 19, 970-971.	4.9	85
36	Increased Expression of β-Chemokines in Muscle of Patients with Inflammatory Myopathies. Journal of Neuropathology and Experimental Neurology, 2000, 59, 164-169.	0.9	81

#	Article	IF	CITATIONS
37	Hind limb muscle atrophy precedes cerebral neuronal degeneration in G93A-SOD1 mouse model of amyotrophic lateral sclerosis: A longitudinal MRI study. Experimental Neurology, 2011, 231, 30-37.	2.0	81
38	Treatment of Myasthenia Gravis. Clinical Drug Investigation, 2011, 31, 691-701.	1.1	79
39	Modulation of MHC class II antigen expression in human myoblasts after treatment with IFNâ $\in \hat{I}^3$. Neurology, 1991, 41, 1128-1128.	1.5	78
40	A Key Regulatory Role for Histamine in Experimental Autoimmune Encephalomyelitis: Disease Exacerbation in Histidine Decarboxylase-Deficient Mice. Journal of Immunology, 2006, 176, 17-26.	0.4	75
41	Etiology of myasthenia gravis: Innate immunity signature in pathological thymus. Autoimmunity Reviews, 2013, 12, 863-874.	2.5	75
42	Thymoma-associated myasthenia gravis: Outcome, clinical and pathological correlations in 197 patients on a 20-year experience. Journal of Neuroimmunology, 2008, 201-202, 237-244.	1.1	73
43	Clinical features and anti-neural reactivity in neuropathy associated with IgG monoclonal gammopathy of undetermined significance. Journal of the Neurological Sciences, 1999, 164, 64-71.	0.3	71
44	Type I interferon and Toll-like receptor expression characterizes inflammatory myopathies. Neurology, 2011, 76, 2079-2088.	1.5	71
45	<i>In vivo</i> quantitative magnetization transfer imaging correlates with histology during de―and remyelination in cuprizoneâ€treated mice. NMR in Biomedicine, 2015, 28, 327-337.	1.6	71
46	Breakdown of Tolerance to a Self-Peptide of Acetylcholine Receptor α-Subunit Induces Experimental Myasthenia Gravis in Rats. Journal of Immunology, 2004, 172, 2697-2703.	0.4	70
47	Construct and concurrent validation of the MGâ€QOL15 in the practice setting. Muscle and Nerve, 2010, 41, 219-226.	1.0	69
48	Opposing roles of miR-21 and miR-29 in the progression of fibrosis in Duchenne muscular dystrophy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1451-1464.	1.8	69
49	Current and emerging therapies for the treatment of myasthenia gravis. Neuropsychiatric Disease and Treatment, 2011, 7, 151.	1.0	65
50	Lambert–Eaton myasthenic syndrome (LEMS): a rare autoimmune presynaptic disorder often associated with cancer. Journal of Neurology, 2017, 264, 1854-1863.	1.8	65
51	A short plasma exchange protocol is effective in severe myasthenia gravis. Journal of Neurology, 1991, 238, 103-107.	1.8	64
52	MuSK autoantibodies in myasthenia gravis detected by cell based assay — A multinational study. Journal of Neuroimmunology, 2015, 284, 10-17.	1.1	63
53	Autoimmune mechanisms in myasthenia gravis. Current Opinion in Neurology, 2012, 25, 621-629.	1.8	62
54	Innate immunity in myasthenia gravis thymus: Pathogenic effects of Toll-like receptor 4 signaling on autoimmunity. Journal of Autoimmunity, 2014, 52, 74-89.	3.0	62

#	Article	IF	CITATIONS
55	Lack of mRNA and dystrophin expression in DMD patients three months after myoblast transfer. Neuromuscular Disorders, 1995, 5, 291-295.	0.3	58
56	Increased Toll-Like Receptor 4 Expression in Thymus of Myasthenic Patients with Thymitis and Thymic Involution. American Journal of Pathology, 2005, 167, 129-139.	1.9	58
57	Risk of arrhythmia in type I myotonic dystrophy: the role of clinical and genetic variables. Journal of Neurology, Neurosurgery and Psychiatry, 2009, 80, 790-793.	0.9	58
58	Myasthenia gravis: from autoantibodies to therapy. Current Opinion in Neurology, 2018, 31, 517-525.	1.8	58
59	Transforming Growth Factor-β1 in Polymyositis and Dermatomyositis Correlates with Fibrosis but not with Mononuclear Cell Infiltrate. Journal of Neuropathology and Experimental Neurology, 1997, 56, 479-484.	0.9	57
60	<i>LMNA</i> -associated myopathies. Neurology, 2014, 83, 1634-1644.	1.5	57
61	Titin antibodies in "seronegative―myasthenia gravis — A new role for an old antigen. Journal of Neuroimmunology, 2016, 292, 108-115.	1.1	57
62	The thymus in myasthenia gravis: Site of "innate autoimmunity�. Muscle and Nerve, 2011, 44, 467-484.	1.0	56
63	The natural killer cell response and tumor debulking are associated with prolonged survival in recurrent glioblastoma patients receiving dendritic cells loaded with autologous tumor lysates. Oncolmmunology, 2013, 2, e23401.	2.1	56
64	Exosomes and exosomal miRNAs from muscle-derived fibroblasts promote skeletal muscle fibrosis. Matrix Biology, 2018, 74, 77-100.	1.5	56
65	Terminal Complement Inhibitor Ravulizumab in Generalized Myasthenia Gravis. , 2022, 1, .		55
66	Allorecognition of human neural stem cells by peripheral blood lymphocytes despite low expression of MHC molecules: role of TGF-Â in modulating proliferation. International Immunology, 2007, 19, 1063-1074.	1.8	53
67	Osteopontin is highly expressed in severely dystrophic muscle and seems to play a role in muscle regeneration and fibrosis. Histopathology, 2011, 59, 1215-1228.	1.6	53
68	Complete stable remission and autoantibody specificity in myasthenia gravis. Neurology, 2013, 80, 188-195.	1.5	53
69	CIC-1 chloride channels: state-of-the-art research and future challenges. Frontiers in Cellular Neuroscience, 2015, 09, 156.	1.8	53
70	Inflammatory myopathies and systemic disorders: a review of immunopathogenetic mechanisms and clinical features. Journal of Neurology, 1997, 244, 277-287.	1.8	52
71	Fibrogenic cytokines and extent of fibrosis in muscle of dogs with X-linked golden retriever muscular dystrophy. Neuromuscular Disorders, 2002, 12, 828-835.	0.3	51
72	Anti-MOG autoantibodies in Italian multiple sclerosis patients: specificity, sensitivity and clinical association. International Immunology, 2004, 16, 559-565.	1.8	51

#	Article	IF	CITATIONS
73	Detection of poliovirus-infected macrophages in thymus of patients with myasthenia gravis. Neurology, 2010, 74, 1118-1126.	1.5	51
74	Sleep breathing disorders in 40 Italian patients with Myotonic dystrophy type 1. Neuromuscular Disorders, 2012, 22, 219-224.	0.3	51
75	The Multiple Sclerosis Knowledge Questionnaire: a self-administered instrument for recently diagnosed patients. Multiple Sclerosis Journal, 2010, 16, 100-111.	1.4	50
76	Up-regulation of neural and cell cycle-related microRNAs in brain of amyotrophic lateral sclerosis mice at late disease stage. Molecular Brain, 2015, 8, 5.	1.3	49
77	Chloroquine myopathy and myasthenia-like syndrome. Muscle and Nerve, 1988, 11, 114-119.	1.0	48
78	The relationship between health, disability and quality of life in Myasthenia Gravis: results from an Italian study. Journal of Neurology, 2010, 257, 98-102.	1.8	48
79	Safety of the first dose of fingolimod for multiple sclerosis: results of an open-label clinical trial. BMC Neurology, 2014, 14, 65.	0.8	47
80	Increased expression of Toll-like receptors 7 and 9 in myasthenia gravis thymus characterized by active Epstein–Barr virus infection. Immunobiology, 2016, 221, 516-527.	0.8	47
81	Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension. Neurology, 2021, 96, e610-e618.	1.5	46
82	Concordance between severity of disease, disability and health-related quality of life in Myasthenia gravis. Neurological Sciences, 2010, 31, 41-45.	0.9	45
83	Oral administration of an immunodominant T-cell epitope downregulates Th1/Th2 cytokines and prevents experimental myasthenia gravis. Journal of Clinical Investigation, 1999, 104, 1287-1295.	3.9	45
84	Is the CACNA1A gene involved in familial migraine with aura?. Neurological Sciences, 2002, 23, 1-5.	0.9	44
85	Autophagy, Inflammation and Innate Immunity in Inflammatory Myopathies. PLoS ONE, 2014, 9, e111490.	1.1	44
86	Concomitant deficiency of β- and γ-sarcoglycans in 20 α-sarcoglycan (adhalin)-deficient patients: immunohistochemical analysis and clinical aspects. Acta Neuropathologica, 1997, 94, 28-35.	3.9	42
87	A large cohort of myotonia congenita probands: novel mutations and a high-frequency mutation region in exons 4 and 5 of the CLCN1 gene. Journal of Human Genetics, 2013, 58, 581-587.	1.1	42
88	Antibodies against neuronal nicotinic receptor subtypes in neurological disorders. Journal of Neuroimmunology, 2000, 102, 89-97.	1.1	41
89	Erythropoietin in amyotrophic lateral sclerosis: A pilot, randomized, double-blind, placebo-controlled study of safety and tolerability. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2009, 10, 410-415.	2.3	41
90	Rare variants in SQSTM1 and VCP genes and risk of sporadic inclusion body myositis. Neurobiology of Aging, 2016, 47, 218.e1-218.e9.	1.5	40

6

#	Article	IF	CITATIONS
91	Diagnosis and treatment of myasthenia gravis. Current Opinion in Rheumatology, 2019, 31, 623-633.	2.0	40
92	Clinical and molecular cross-sectional study of a cohort of adult type III spinal muscular atrophy patients: clues from a biomarker study. European Journal of Human Genetics, 2013, 21, 630-636.	1.4	39
93	Administration of bifidobacterium and lactobacillus strains modulates experimental myasthenia gravis and experimental encephalomyelitis in Lewis rats. Oncotarget, 2018, 9, 22269-22287.	0.8	38
94	Italian recommendations for the diagnosis and treatment of myasthenia gravis. Neurological Sciences, 2019, 40, 1111-1124.	0.9	38
95	Prospects for specific immunotherapy in myasthenia gravis. FASEB Journal, 1990, 4, 2726-2731.	0.2	36
96	Gut microbiota and probiotics: novel immune system modulators in myasthenia gravis?. Annals of the New York Academy of Sciences, 2018, 1413, 49-58.	1.8	36
97	Anti-titin and Antiryanodine Receptor Antibodies in Myasthenia Gravis Patients with Thymoma. Annals of the New York Academy of Sciences, 1998, 841, 538-541.	1.8	35
98	Cellular aspects of myositis. Current Opinion in Rheumatology, 1994, 6, 568-574.	2.0	33
99	Dystrophin characterization in BMD patients: correlation of abnormal protein with clinical phenotype. Journal of the Neurological Sciences, 1995, 132, 146-155.	0.3	33
100	Social support and self-efficacy in patients with Myasthenia Gravis: a common pathway towards positive health outcomes. Neurological Sciences, 2010, 31, 231-235.	0.9	33
101	Pilot trial of simvastatin in the treatment of sporadic inclusion-body myositis. Neurological Sciences, 2011, 32, 841-847.	0.9	33
102	A novel infection- and inflammation-associated molecular signature in peripheral blood of myasthenia gravis patients. Immunobiology, 2016, 221, 1227-1236.	0.8	33
103	LAMA2 Gene Analysis in Congenital Muscular Dystrophy. Archives of Neurology, 2005, 62, 1582-6.	4.9	32
104	Animal models of myasthenia gravis: utility and limitations. International Journal of General Medicine, 2016, 9, 53.	0.8	32
105	Eculizumab improves fatigue in refractory generalized myasthenia gravis. Quality of Life Research, 2019, 28, 2247-2254.	1.5	32
106	Altered miRNA expression is associated with neuronal fate in G93A-SOD1 ependymal stem progenitor cells. Experimental Neurology, 2014, 253, 91-101.	2.0	31
107	Sequential antibodies to potassium channels and glutamic acid decarboxylase in neuromyotonia. Neurology, 2005, 64, 1290-1293.	1.5	30
108	Longitudinal evaluation of SMN levels as biomarker for spinal muscular atrophy: results of a phase IIb double-blind study of salbutamol. Journal of Medical Genetics, 2019, 56, 293-300.	1.5	30

#	Article	IF	CITATIONS
109	Circulating MyomiRs as Potential Biomarkers to Monitor Response to Nusinersen in Pediatric SMA Patients. Biomedicines, 2020, 8, 21.	1.4	30
110	Risk factors for tumor occurrence in patients with myasthenia gravis. Journal of Neurology, 2009, 256, 1221-1227.	1.8	29
111	Allergy and multiple sclerosis: a population-based case-control study. Multiple Sclerosis Journal, 2009, 15, 899-906.	1.4	29
112	Fibrosis and inflammation are greater in muscles of beta-sarcoglycan-null mouse than mdx mouse. Cell and Tissue Research, 2014, 356, 427-443.	1.5	29
113	New antigen for antibody detect ion in myasthenia gravis. Neurology, 1984, 34, 374-374.	1.5	28
114	Immunosuppressive Treatments: Their Efficacy on Myasthenia Gravis Patients' Outcome and on the Natural Course of the Disease. Annals of the New York Academy of Sciences, 1993, 681, 594-602.	1.8	28
115	Video-assisted Thoracoscopic Extended Thymectomy (VATET) in Myasthenia Gravis Two-Year Follow-up in 101 Patients and Comparison with the Transsternal Approach. Annals of the New York Academy of Sciences, 1998, 841, 749-752.	1.8	28
116	Effect of IgG immunoadsorption on serum cytokines in MG and LEMS patients. Journal of Neuroimmunology, 2008, 201-202, 104-110.	1.1	28
117	Comparative neuronal differentiation of self-renewing neural progenitor cell lines obtained from human induced pluripotent stem cells. Frontiers in Cellular Neuroscience, 2013, 7, 175.	1.8	28
118	Home-based palliative approach for people with severe multiple sclerosis and their carers: study protocol for a randomized controlled trial. Trials, 2015, 16, 184.	0.7	28
119	Tollâ€like receptors 7 and 9 in myasthenia gravis thymus: amplifiers of autoimmunity?. Annals of the New York Academy of Sciences, 2018, 1413, 11-24.	1.8	28
120	Epidemiological study of myasthenia gravis in the province of Reggio Emilia, Italy. European Journal of Epidemiology, 1998, 14, 381-387.	2.5	27
121	Development and validation of a patient self-assessed questionnaire on satisfaction with communication of the multiple sclerosis diagnosis. Multiple Sclerosis Journal, 2010, 16, 1237-1247.	1.4	27
122	Fibroblasts from the muscles of Duchenne muscular dystrophy patients are resistant to cell detachment apoptosis. Experimental Cell Research, 2011, 317, 2536-2547.	1.2	27
123	<scp>VAV</scp> 1 and <scp>BAFF</scp> , via <scp>NF</scp> î⁰B pathway, are genetic risk factors for myasthenia gravis. Annals of Clinical and Translational Neurology, 2014, 1, 329-339.	1.7	27
124	Difficulties in adjustment to multiple sclerosis: vulnerability and unpredictability of illness in the foreground. Disability and Rehabilitation, 2017, 39, 897-903.	0.9	27
125	<p>Complement Inhibition for the Treatment of Myasthenia Gravis</p> . ImmunoTargets and Therapy, 2020, Volume 9, 317-331.	2.7	27
126	Two cases of thymoma-associated myasthenia gravis without antibodies to the acetylcholine receptor. Neuromuscular Disorders, 2008, 18, 678-680.	0.3	26

#	Article	IF	CITATIONS
127	ICF in neurology: Functioning and disability in patients with migraine, myasthenia gravis and Parkinson's disease. Disability and Rehabilitation, 2009, 31, S88-S99.	0.9	26
128	Human Neurotrophin Receptor p75NTR Defines Differentiation-Oriented Skeletal Muscle Precursor Cells: Implications for Muscle Regeneration. Journal of Neuropathology and Experimental Neurology, 2011, 70, 133-142.	0.9	26
129	The European LEMS Registry: Baseline Demographics and Treatment Approaches. Neurology and Therapy, 2015, 4, 105-124.	1.4	26
130	FM19G11-Loaded Gold Nanoparticles Enhance the Proliferation and Self-Renewal of Ependymal Stem Progenitor Cells Derived from ALS Mice. Cells, 2019, 8, 279.	1.8	26
131	miR-146a in Myasthenia Gravis Thymus Bridges Innate Immunity With Autoimmunity and Is Linked to Therapeutic Effects of Corticosteroids. Frontiers in Immunology, 2020, 11, 142.	2.2	26
132	Labeling of rat neurons by anti-GluR3 IgG from patients with Rasmussen encephalitis. Neurology, 2001, 57, 324-327.	1.5	25
133	Similar binding to glutamate receptors by Rasmussen and partial epilepsy patients' sera. Neurology, 2002, 59, 1998-2001.	1.5	25
134	Analysis of antibody gene rearrangement, usage, and specificity in chronic focal encephalitis. Neurology, 2002, 58, 709-716.	1.5	25
135	Inflammation and Epstein-Barr Virus Infection Are Common Features of Myasthenia Gravis Thymus: Possible Roles in Pathogenesis. Autoimmune Diseases, 2011, 2011, 1-17.	2.7	25
136	Pharmacogenetics of myotonic hNav1.4 sodium channel variants situated near the fast inactivation gate. Pharmacological Research, 2019, 141, 224-235.	3.1	25
137	Major histocompatibility complex class II molecule expression on muscle cells is regulated by differentiation: implications for the immunopathogenesis of muscle autoimmune diseases. Journal of Neuroimmunology, 1996, 68, 53-60.	1.1	24
138	Identification of a Novel HLA Class II Association with DQB1*0502 in an Italian Myasthenic Population. Annals of the New York Academy of Sciences, 1998, 841, 355-359.	1.8	24
139	ClCâ€1 mutations in myotonia congenita patients: insights into molecular gating mechanisms and genotype–phenotype correlation. Journal of Physiology, 2015, 593, 4181-4199.	1.3	24
140	Multidisciplinary study of a new ClCâ€1 mutation causing myotonia congenita: a paradigm to understand and treat ion channelopathies. FASEB Journal, 2016, 30, 3285-3295.	0.2	24
141	Italian recommendations for diagnosis and management of congenital myasthenic syndromes. Neurological Sciences, 2019, 40, 457-468.	0.9	24
142	Marked phenotypic variability in two siblings with congenital myasthenic syndrome due to mutations in MUSK. Journal of Neurology, 2013, 260, 2894-2896.	1.8	23
143	Epstein-Barr virus in tumor-infiltrating B cells of myasthenia gravis thymoma: an innocent bystander or an autoimmunity mediator?. Oncotarget, 2017, 8, 95432-95449.	0.8	23
144	Amifampridine phosphate in the treatment of muscle-specific kinase myasthenia gravis: a phase IIb, randomized, double-blind, placebo-controlled, double crossover study. SAGE Open Medicine, 2018, 6, 205031211881901.	0.7	23

#	Article	IF	CITATIONS
145	Protein-A immunoadsorption in immunosuppression-resistant myasthenia gravis. Lancet, The, 1994, 343, 124.	6.3	22
146	The expression of co-stimulatory and accessory molecules on cultured human muscle cells is not dependent on stimulus by pro-inflammatory cytokines: relevance for the pathogenesis of inflammatory myopathy. Journal of Neuroimmunology, 1998, 85, 52-58.	1.1	22
147	IL-1 genes in myasthenia gravis: IL-1A â^'889 polymorphism associated with sex and age of disease onset. Journal of Neuroimmunology, 2002, 122, 94-99.	1.1	22
148	Naturally Occurring CD4+CD25+ Regulatory T Cells Prevent but Do Not Improve Experimental Myasthenia Gravis. Journal of Immunology, 2010, 185, 5656-5667.	0.4	22
149	Therapeutic Effect of Bifidobacterium Administration on Experimental Autoimmune Myasthenia Gravis in Lewis Rats. Frontiers in Immunology, 2019, 10, 2949.	2.2	22
150	Multiomic elucidation of a coding 99-mer repeat-expansion skeletal muscle disease. Acta Neuropathologica, 2020, 140, 231-235.	3.9	22
151	Identification of three novel mutations in the major human skeletal muscle chloride channel gene (CLCN1), causing myotonia congenita. Human Mutation, 1999, 14, 447-447.	1.1	21
152	Identification of international classification of functioning, disability and health relevant categories to describe functioning and disability of patients with myasthenia gravis. Disability and Rehabilitation, 2009, 31, 2041-2046.	0.9	21
153	A New Thiopurine Sâ€Methyltransferase Haplotype Associated With Intolerance to Azathioprine. Journal of Clinical Pharmacology, 2013, 53, 67-74.	1.0	21
154	Anti-fibrotic effect of pirfenidone in muscle derived-fibroblasts from Duchenne muscular dystrophy patients. Life Sciences, 2016, 145, 127-136.	2.0	21
155	Increased incidence of certain TCR and HLA genes associated with myasthenia gravis in Italians. Journal of Autoimmunity, 1990, 3, 431-440.	3.0	20
156	Immune activation in myasthenia gravis: Soluble interleukin-2 receptor, interferon- $\hat{1}^3$ and tumor necrosis factor- $\hat{1}^\pm$ levels in patients' serum. Journal of Neuroimmunology, 1993, 48, 33-36.	1.1	20
157	The Kinesin Superfamily Motor Protein KIF4 Is Associated With Immune Cell Activation in Idiopathic Inflammatory Myopathies. Journal of Neuropathology and Experimental Neurology, 2008, 67, 624-632.	0.9	20
158	Disability and functional profiles of patients with myasthenia gravis measured with ICF classification. International Journal of Rehabilitation Research, 2009, 32, 167-172.	0.7	19
159	A longitudinal DTI and histological study of the spinal cord reveals early pathological alterations in G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Experimental Neurology, 2017, 293, 43-52.	2.0	19
160	Coexistence of CLCN1 and SCN4A mutations in one family suffering from myotonia. Neurogenetics, 2017, 18, 219-225.	0.7	19
161	Agingâ€associated genes and <i>letâ€7</i> microRNAs: a contribution to myogenic program dysregulation in oculopharyngeal muscular dystrophy. FASEB Journal, 2019, 33, 7155-7167.	0.2	19
162	From Traditional to Targeted Immunotherapy in Myasthenia Gravis: Prospects for Research. Frontiers in Neurology, 2020, 11, 981.	1.1	19

#	Article	IF	CITATIONS
163	The Course of Myasthenia Gravis in Patients Treated with Corticosteroids, Azathioprine, and Plasmapheresis. Annals of the New York Academy of Sciences, 1987, 505, 517-525.	1.8	18
164	HTLV-I sequences are not detected in peripheral blood genomic DNA or in brain cDNA of multiple sclerosis patients. Annals of Neurology, 1990, 28, 574-577.	2.8	18
165	Development of the MG-DIS: an ICF-based disability assessment instrument for myasthenia gravis. Disability and Rehabilitation, 2014, 36, 546-555.	0.9	18
166	Italian recommendations for Lambert–Eaton myasthenic syndrome (LEMS) management. Neurological Sciences, 2014, 35, 515-520.	0.9	18
167	Long-term efficacy and safety of eculizumab in Japanese patients with generalized myasthenia gravis: A subgroup analysis of the REGAIN open-label extension study. Journal of the Neurological Sciences, 2019, 407, 116419.	0.3	18
168	Very small dystrophin molecule in a family with a mild form of Becker dystrophy. Neuromuscular Disorders, 1993, 3, 65-70.	0.3	17
169	Early effect of dalfampridine in patients with MS: A multi-instrumental approach to better investigate responsiveness. Journal of the Neurological Sciences, 2016, 368, 402-407.	0.3	17
170	Anti AChR antibody: Relevance to diagnosis and clinical aspects of myasthenia gravis. Italian Journal of Neurological Sciences, 1988, 9, 141-145.	0.1	16
171	Clinical heterogeneity of adhalin deficiency. Annals of Neurology, 1996, 39, 196-202.	2.8	16
172	Duchenne muscular dystrophy fibroblast nodules: a cell-based assay for screening anti-fibrotic agents. Cell and Tissue Research, 2013, 352, 659-670.	1.5	16
173	The effects of an intronic polymorphism in TOMM40 and APOE genotypes in sporadic inclusion body myositis. Neurobiology of Aging, 2015, 36, 1766.e1-1766.e3.	1.5	16
174	Validation of the MG-DIS: a disability assessment for myasthenia gravis. Journal of Neurology, 2016, 263, 871-882.	1.8	16
175	MicroRNA signature associated with treatment response in myasthenia gravis: A further step towards precision medicine. Pharmacological Research, 2019, 148, 104388.	3.1	16
176	Consistent improvement with eculizumab across muscle groups in myasthenia gravis. Annals of Clinical and Translational Neurology, 2020, 7, 1327-1339.	1.7	16
177	T-Cell Infiltration in Polymyositis Is Characterized by Coexpression of Cytotoxic and T-Cell-Activating Cytokine Transcripts. Annals of the New York Academy of Sciences, 1995, 756, 418-420.	1.8	15
178	MyomiRs and their multifaceted regulatory roles in muscle homeostasis and amyotrophic lateral sclerosis. Journal of Cell Science, 2021, 134, .	1.2	15
179	Antibody Therapies in Autoimmune Neuromuscular Junction Disorders: Approach to Myasthenic Crisis and Chronic Management. Neurotherapeutics, 2022, 19, 897-910.	2.1	15
180	DMD and BMD in the same family due to two distinct mutations. American Journal of Medical Genetics Part A, 1995, 59, 501-505.	2.4	14

#	Article	IF	CITATIONS
181	BDNF and its receptors in human myasthenic thymus: Implications for cell fate in thymic pathology. Journal of Neuroimmunology, 2008, 197, 128-139.	1.1	14
182	CD4+CD25+ Regulatory T Cells Specific for a Thymus-Expressed Antigen Prevent the Development of Anaphylaxis to Self. Journal of Immunology, 2008, 180, 4433-4440.	0.4	14
183	Hyperexcitability in Cultured Cortical Neuron Networks from the G93A-SOD1 Amyotrophic Lateral Sclerosis Model Mouse and its Molecular Correlates. Neuroscience, 2019, 416, 88-99.	1.1	14
184	Dysregulation of Muscle-Specific MicroRNAs as Common Pathogenic Feature Associated with Muscle Atrophy in ALS, SMA and SBMA: Evidence from Animal Models and Human Patients. International Journal of Molecular Sciences, 2021, 22, 5673.	1.8	14
185	Variable disease severity in Saudi Arabian and Sudanese families with c.3924 + 2 T > C mutation of LAMA2. BMC Research Notes, 2011, 4, 534.	0.6	13
186	Human CD14+ cells loaded with Paclitaxel inhibit in vitro cell proliferation of glioblastoma. Cytotherapy, 2015, 17, 310-319.	0.3	13
187	Severe multiple sclerosis reactivation during prolonged lymphopenia after dimethyl fumarate discontinuation. Acta Neurologica Scandinavica, 2018, 137, 623-625.	1.0	13
188	Up-regulation of Toll-like receptors 7 and 9 and its potential implications in the pathogenic mechanisms of <i>LMNA</i> -related myopathies. Nucleus, 2018, 9, 398-409.	0.6	13
189	Next-generation sequencing application to investigate skeletal muscle channelopathies in a large cohort of Italian patients. Neuromuscular Disorders, 2021, 31, 336-347.	0.3	13
190	Patient-reported impact of myasthenia gravis in the real world: protocol for a digital observational study (MyRealWorld MG). BMJ Open, 2021, 11, e048198.	0.8	13
191	Novel Cell-Based Assay for Alpha-3 Nicotinic Receptor Antibodies Detects Antibodies Exclusively in Autoimmune Autonomic Ganglionopathy. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	3.1	13
192	Synthetic Peptides and Their Antibodies in the Analysis of the Acetylcholine Receptor. Annals of the New York Academy of Sciences, 1987, 505, 256-271.	1.8	12
193	Increased Il-8 Levels in the Cerebrospinal Fluid of Patients with Amyotrophic Lateral Sclerosis. European Journal of Inflammation, 2009, 7, 39-44.	0.2	12
194	Experience of an information aid for newly diagnosed multiple sclerosis patients: a qualitative study on the SIMSâ€Trial. Health Expectations, 2014, 17, 36-48.	1.1	12
195	Development and validation of the multiple sclerosis questionnaire for the evaluation of job difficulties (MSQ-Job). Acta Neurologica Scandinavica, 2015, 132, 226-234.	1.0	12
196	Employment in Myasthenia Gravis: A Systematic Literature Review and Meta-Analysis. Neuroepidemiology, 2020, 54, 304-312.	1.1	12
197	Quantitative Muscle MRI Protocol as Possible Biomarker in Becker Muscular Dystrophy. Clinical Neuroradiology, 2021, 31, 257-266.	1.0	12
198	A new non-radioactive method for the screening and prenatal diagnosis of myotonic dystrophy patients. Journal of Neurology, 1998, 245, 289-293.	1.8	11

#	Article	IF	CITATIONS
199	Letter to the editor. Journal of the Neurological Sciences, 2004, 217, 233-234.	0.3	11
200	Identification of previously unreported mutations in CHRNA1, CHRNE and RAPSN genes in three unrelated Italian patients with congenital myasthenic syndromes. Journal of Neurology, 2010, 257, 1119-1123.	1.8	11
201	Validation of the besta neurological institute rating scale for myasthenia gravis. Muscle and Nerve, 2016, 53, 32-37.	1.0	11
202	Severe articular and musculoskeletal pain: An unexpected side effect of dimethyl-fumarate therapy for multiple sclerosis. Journal of the Neurological Sciences, 2016, 369, 139-140.	0.3	11
203	A propensity score analysis for comparison of T-3b and VATET in myasthenia gravis. Neurology, 2017, 89, 189-195.	1.5	11
204	Immune Soluble Factors in the Cerebrospinal Fluid of Progressive Multiple Sclerosis Patients Segregate Into Two Groups. Frontiers in Immunology, 2021, 12, 633167.	2.2	11
205	Eculizumab in refractory generalized myasthenia gravis previously treated with rituximab: subgroup analysis of <scp>REGAIN</scp> and its extension study. Muscle and Nerve, 2021, 64, 662-669.	1.0	11
206	Changes in peripheral blood lymphocyte subset frequencies in myasthenia gravis patients are related to immunosuppression. Journal of Neurology, 1994, 241, 218-222.	1.8	10
207	Plasma Treatment in Diseases of the Neuromuscular Junction. Annals of the New York Academy of Sciences, 1998, 841, 803-810.	1.8	10
208	Pixantrone (BBR2778) Reduces the Severity of Experimental Autoimmune Myasthenia Gravis in Lewis Rats. Journal of Immunology, 2008, 180, 2696-2703.	0.4	10
209	Exacerbation of experimental autoimmune encephalomyelitis by passive transfer of IgC antibodies from a multiple sclerosis patient responsive to immunoadsorption. Journal of Neuroimmunology, 2013, 262, 19-26.	1.1	10
210	CHARACTERIZATION BY MOLECULAR MARKERS OF 'POMPIA', A NATURAL CITRUS HYBRID CULTIVATED IN SARDINIA. Acta Horticulturae, 2015, , 165-172.	0.1	10
211	Eculizumab for the treatment of myasthenia gravis. Expert Opinion on Biological Therapy, 2020, 20, 991-998.	1.4	10
212	Species specificity of anti-acetylcholine receptor antibodies elicited by synthetic peptides. Biochemistry, 1987, 26, 4611-4616.	1.2	9
213	Detection of antibody classes and subpopulations in Myasthenia gravis patients using a new nonradioactive enzyme immunoassay. , 1997, 20, 800-808.		9
214	Expression of Transforming Growth Factor-β1 in Thymus of Myasthenia Gravis Patients. Annals of the New York Academy of Sciences, 2003, 998, 278-283.	1.8	9
215	Immunotherapy responsive startle with antibodies to voltage gated potassium channels. Journal of Neurology, Neurosurgery and Psychiatry, 2007, 78, 1281-1290.	0.9	9
216	Anaphylaxis to a self-peptide in the absence of mast cells or histamine. Laboratory Investigation, 2009, 89, 398-405.	1.7	9

#	Article	IF	CITATIONS
217	Epsteinâ€barr virus in myasthenia gravis thymus: A matter of debate. Annals of Neurology, 2011, 70, 519-519.	2.8	9
218	Identification of a gene expression signature in peripheral blood of multiple sclerosis patients treated with disease-modifying therapies. Clinical Immunology, 2016, 173, 133-146.	1.4	9
219	Amifampridine tablets for the treatment of Lambert-Eaton myasthenic syndrome. Expert Review of Clinical Pharmacology, 2019, 12, 1013-1018.	1.3	9
220	Unusual neurophysiological and immunological findings in myasthenia gravis: a case report. Journal of the Peripheral Nervous System, 2004, 9, 92-97.	1.4	8
221	European Database for Myasthenia Gravis: A model for an international disease registry. Neurology, 2014, 83, 189-191.	1.5	8
222	Psychosocial difficulties of individuals with multiple sclerosis: the PARADISE-24 questionnaire. International Journal of Rehabilitation Research, 2016, 39, 339-345.	0.7	8
223	Validation of the italian version of the 15â€item Myasthenia Gravis Qualityâ€ofâ€Life questionnaire. Muscle and Nerve, 2017, 56, 716-720.	1.0	8
224	Cytokine Profile in Striated Muscle Laminopathies: New Promising Biomarkers for Disease Prediction. Cells, 2020, 9, 1532.	1.8	8
225	Myasthenia gravis remission and anti-AChR ab reduction after immunosuppressive and anti-neoplastic therapy in a patient with thymic Hodgkin's disease. Journal of Neurology, 2006, 253, 1241-1242.	1.8	7
226	Patient registries: useful tools for clinical research in myasthenia gravis. Annals of the New York Academy of Sciences, 2012, 1274, 107-113.	1.8	7
227	Cognitive function alone is a poor predictor of health-related quality of life in employed patients with MS: results from a cross-sectional study. Clinical Neuropsychologist, 2016, 30, 201-215.	1.5	7
228	Glycogen storage in a zebrafish Pompe disease model is reduced by 3-BrPA treatment. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165662.	1.8	7
229	Clinical and Molecular Spectrum of Myotonia and Periodic Paralyses Associated With Mutations in SCN4A in a Large Cohort of Italian Patients. Frontiers in Neurology, 2020, 11, 646.	1.1	7
230	Reliability and Repeatability Analysis of Indices to Measure Gait Deterioration in MS Patients during Prolonged Walking. Sensors, 2020, 20, 5063.	2.1	7
231	Genetic defects are common in myopathies with tubular aggregates. Annals of Clinical and Translational Neurology, 2022, 9, 4-15.	1.7	7
232	Long-term cardiovascular autonomic and clinical changes after immunoglobulin G immunoadsorption therapy in autoimmune autonomic ganglionopathy. Journal of Hypertension, 2017, 35, 1513-1520.	0.3	6
233	Measuring changes in gait kinematics due to walking-related fatigue in patients with Multiple Sclerosis. , 2019, , .		6
234	Older age, higher perceived disability and depressive symptoms predict the amount and severity of work-related difficulties in persons with multiple sclerosis. Disability and Rehabilitation, 2019, 41, 2255-2263.	0.9	6

#	Article	IF	CITATIONS
235	Anti-neuronal nicotinic receptor antibodies in MG patients with thymoma. Journal of Neuroimmunology, 2001, 113, 142-145.	1.1	5
236	Immunization with Rat-, but Not Torpedo-Derived 97-116 Peptide of the AChR α-Subunit Induces Experimental Myasthenia Gravis in Lewis Rat. Annals of the New York Academy of Sciences, 2003, 998, 391-394.	1.8	5
237	A novel ABCC6 haplotype is associated with azathioprine drug response in myasthenia gravis. Pharmacogenetics and Genomics, 2017, 27, 51-56.	0.7	5
238	Validity, reliability, and sensitivity to change of the myasthenia gravis activities of daily living profile in a sample of Italian myasthenic patients. Neurological Sciences, 2017, 38, 1927-1931.	0.9	5
239	Therapeutic efficacy of 3,4-Diaminopyridine phosphate on neuromuscular junction in Pompe disease. Biomedicine and Pharmacotherapy, 2021, 137, 111357.	2.5	5
240	Comparison of Diffusion MRI Acquisition Protocols for the In Vivo Characterization of the Mouse Spinal Cord: Variability Analysis and Application to an Amyotrophic Lateral Sclerosis Model. PLoS ONE, 2016, 11, e0161646.	1.1	5
241	Effect on T Cell Recognition and Immunogenicity of Alanine-Substituted Peptides Corresponding to 97-116 Sequence of the Rat AChR α-Subunit. Annals of the New York Academy of Sciences, 2003, 998, 395-398.	1.8	4
242	Response to Dr. Jaretzki's letter on video-assisted thoracoscopic extended thymectomy. Journal of the Neurological Sciences, 2004, 217, 235-236.	0.3	4
243	Biobank of Cells, Tissues and DNA from Patients with Neuromuscular Diseases: An Indispensable link between Clinical Centers and the Scientific Community. Open Journal of Bioresources, 2017, 4, .	1.5	4
244	Emerging Treatments in Myopathies. European Neurology, 1997, 38, 222-229.	0.6	3
245	Rasmussen's encephalitis: update on pathogenesis and treatment. Expert Review of Neurotherapeutics, 2003, 3, 835-843.	1.4	3
246	Antimyelin Antibodies in Multiple Sclerosis. New England Journal of Medicine, 2003, 349, 2269-2271.	13.9	3
247	Calsequestrin and junctin immunoreactivity in hexagonally cross-linked tubular arrays myopathy. Neuromuscular Disorders, 2010, 20, 326-329.	0.3	3
248	Percutaneous vertebroplasty in a series of myasthenic patients with steroid-induced symptomatic vertebral fractures. Neurological Sciences, 2013, 34, 773-776.	0.9	3
249	Differential targeting of immune-cells by Pixantrone in experimental myasthenia gravis. Journal of Neuroimmunology, 2013, 258, 41-50.	1.1	3
250	Immunotherapy responsive startle with antibodies to voltage gated potassium channels. BMJ Case Reports, 2009, 2009, bcr0920080988-bcr0920080988.	0.2	3
251	Thymectomy for myasthenia gravis: a fourteen-year experience. Italian Journal of Neurological Sciences, 1985, 6, 425-428.	0.1	2
252	HL A-A2-Restricted T-Cell Line Recognizing an Epitope of the Human Acetylcholine Receptor. Annals of the New York Academy of Sciences, 1993, 681, 276-279.	1.8	2

#	Article	IF	CITATIONS
253	Oral Administration of an Immunodominant TAChR Epitope Modulates Antigen-specific T Cell Responses in Mice. Annals of the New York Academy of Sciences, 1998, 841, 568-571.	1.8	2
254	Analysis of SjTREC Levels in Thymus from MG Patients and Normal Children. Annals of the New York Academy of Sciences, 2003, 998, 270-274.	1.8	2
255	Molecular Heterogeneity in Acute Renal Allograft Rejection and DNA Microarrays. New England Journal of Medicine, 2003, 349, 2269-2269.	13.9	2
256	Multiple sclerosis and migration in Italy: A case/control study. Acta Neurologica Scandinavica, 2009, 64, 361-369.	1.0	2
257	P20.4 Antithetic role of miR-21 and miR-29 in the progression of fibrosis in Duchenne muscular dystrophy. Neuromuscular Disorders, 2013, 23, 839-840.	0.3	2
258	Multiple Sclerosis Questionnaire for Job Difficulties (MSQ-Job): definition of the cut-off score. Neurological Sciences, 2016, 37, 777-780.	0.9	2
259	Botulinum toxin type A affects the transcriptome of cell cultures derived from muscle biopsies of controls and spastic patients. Toxicology in Vitro, 2018, 50, 124-136.	1.1	2
260	Pharmacogenetic and pharmaco-miR biomarkers for tailoring and monitoring myasthenia gravis treatments. Expert Review of Precision Medicine and Drug Development, 2020, 5, 317-329.	0.4	2
261	Use of immunoadsorbent columns for antiacetylcholine receptor antibody removal from plasma of myasthenia gravis patients. Plasma Therapy and Transfusion Technology, 1988, 9, 73-75.	0.2	1
262	T-Cell Receptor-CDR3 Sequences of Polymyositis Muscle-Infiltrating T-Lymphocytes Indicate a Conventional Antigen as Target. Annals of the New York Academy of Sciences, 1995, 756, 414-417.	1.8	1
263	Chapter 15 Clinical Trials in Muscle Disorders. Blue Books of Practical Neurology, 2001, 25, 311-325.	0.1	1
264	Idiopathic Inflammatory Myopathies: A Review of Immunopathological Features and Current Models of Pathogenesis. , 0, , .		1
265	Orphan drugs to treat myasthenia gravis. Expert Opinion on Orphan Drugs, 2013, 1, 373-384.	0.5	1
266	G.P.136. Neuromuscular Disorders, 2014, 24, 841-842.	0.3	1
267	Prevalence study of muscle channelopathies in Italy. Neuromuscular Disorders, 2016, 26, S197.	0.3	1
268	Paraneoplastic autoimmune diseases in patients with thymic malignancies: a favorable, but not independent, prognostic factor. Mediastinum, 0, 2, 41-41.	0.6	1
269	Atypical Post-Injection Reactions with Delayed Onset Following Glatiramer Acetate 40Âmg: Need for Titration?. CNS Drugs, 2018, 32, 653-660.	2.7	1
270	latrogenic Kaposi's sarcoma in myasthenia gravis: learnings from two case reports. Neurological Sciences, 2021, 42, 2081-2083.	0.9	1

#	Article	IF	CITATIONS
271	Association of increased progression-free survival in primary glioblastomas with lymphopenia at baseline and activation of NK and NKT cells after dendritic cell immunotherapy Journal of Clinical Oncology, 2014, 32, 2087-2087.	0.8	1
272	Complement Activation Profile in Myasthenia Gravis Patients: Perspectives for Tailoring Anti-Complement Therapy. Biomedicines, 2022, 10, 1360.	1.4	1
273	Immunoblot analysis of antiAChR antibodies in myasthenia gravis. Journal of Neuroimmunology, 1988, 17, 258.	1.1	0
274	Sa.21. Thymus of Myasthenic Patients with Thymitis and Thymic Involution Express High Levels of Toll-Like Receptor 4. Clinical Immunology, 2006, 119, S112.	1.4	0
275	G.P.13.09 Identification of a point mutation in the skeletal muscle ryanodine receptor gene associated in the homozygous state to central core disease. Neuromuscular Disorders, 2008, 18, 809-810.	0.3	0
276	F.115. Histamine Regulates Myelin-activated T Cell Function and Adhesiveness in Inflamed Brain Microcirculation. Clinical Immunology, 2009, 131, S124.	1.4	0
277	Central core disease and susceptibility to malignant hyperthermia in a single family. Journal of Neurology, 2009, 256, 1161-1163.	1.8	0
278	EM.P.3.04 Muscle-derived Duchenne muscular dystrophy fibroblasts show altered production of extra-cellular matrix components. Neuromuscular Disorders, 2009, 19, 575.	0.3	0
279	Myasthenia Gravis. Autoimmune Diseases, 2011, 2011, 1-3.	2.7	0
280	P.12.4 Great phenotypic variability in two siblings affected by congenital myasthenic syndrome associated with mutations in MUSK. Neuromuscular Disorders, 2013, 23, 806.	0.3	0
281	P.21.1 Autophagy as a link between immunity and inflammation in idiopathic inflammatory myopathies. Neuromuscular Disorders, 2013, 23, 843-844.	0.3	0
282	Antibodies to LRP4 in serum and CSF from amyotrophic lateral sclerosis patients. Journal of Neuroimmunology, 2014, 275, 26.	1.1	0
283	Increased expression KIR4.1 potassium channel in experimental models of demyelination. Journal of Neuroimmunology, 2014, 275, 108.	1.1	0
284	G.P.137. Neuromuscular Disorders, 2014, 24, 842.	0.3	0
285	Functional and pharmacological characterization of the new M1808I mutation in hNav1.4 found in a patient presenting with myotonia and myasthenia. Neuromuscular Disorders, 2015, 25, S210.	0.3	0
286	MuSK MG patients showed a positive response to amifampridine phosphate in a randomized, placebo-controlled, crossover study. Neuromuscular Disorders, 2017, 27, S249.	0.3	0
287	Potential role of exosomes in skeletal muscle fibrosis. Neuromuscular Disorders, 2017, 27, S169.	0.3	0
288	Muscle MRI protocol for progression evaluation in inclusion body myositis and Becker muscular dystrophy-baseline data. Neuromuscular Disorders, 2017, 27, S124.	0.3	0

#	Article	IF	CITATIONS
289	Establishing a relationship between EQ-5D and QMG in patients with Lambert-Eaton myasthenic syndrome. Neuromuscular Disorders, 2017, 27, S223-S224.	0.3	0
290	Establishing a relationship between EQ-5D-5L and QMG in patients with Lambert-Eaton myasthenic syndrome. Journal of the Neurological Sciences, 2017, 381, 468-469.	0.3	0
291	The transcriptome of cell cultures derived from muscle biopsies of controls and spastic patients is affected by botulinum toxin type A. Toxicon, 2018, 156, S82.	0.8	0
292	Autoimmune Ion Channel Disorders of the Peripheral Nervous System. , 2015, , 457-468.		0
293	Epstein-Barr Virus in Myasthenia Gravis: Key Contributing Factor Linking Innate Immunity with B-Cell-Mediated Autoimmunity. , 0, , .		0
294	Inflammatory Myopathies. , 2006, , 119-134.		0
295	A Validated HPLC-MS/MS Method for Quantification of Fingolimod and Fingolimod-Phosphate in Human Plasma: Application to Patients with Relapsing–Remitting Multiple Sclerosis. Applied Sciences (Switzerland), 2022, 12, 6102.	1.3	0