
Marij J P Welters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7089876/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CD161 expression and regulation defines rapidly responding effector CD4+ T cells associated with improved survival in HPV16-associated tumors. , 2022, 10, e003995.		16
2	Tumor-specific T cells support chemokine-driven spatial organization of intratumoral immune microaggregates needed for long survival. , 2022, 10, e004346.		15
3	T and NK Cells in IL2RG-Deficient Patient 50 Years After Hematopoietic Stem Cell Transplantation. Journal of Clinical Immunology, 2022, 42, 1205-1222.	2.0	2
4	Interferonâ€î³ and IL â€5 associated cellâ€mediated immune responses to HPV16 E2 and E6 distinguish between persistent oral HPV16 infections and noninfected mucosa. Clinical and Experimental Dental Research, 2021, 7, 903-913.	0.8	5
5	PROTECT: Prospective Phase-II-Trial Evaluating Adaptive Proton Therapy for Cervical Cancer to Reduce the Impact on Morbidity and the Immune System. Cancers, 2021, 13, 5179.	1.7	7
6	35â€Chemokine-driven spatial organization of immune cell microaggregates marks oropharyngeal squamous cell carcinomas containing tumor-specific T cells. , 2021, 9, A41-A41.		0
7	Predictive Biomarkers for Outcomes of Immune Checkpoint Inhibitors (ICIs) in Melanoma: A Systematic Review. Cancers, 2021, 13, 6366.	1.7	10
8	Optimization in Detection of Antigenâ€Specific T Cells Through Differentially Labeled MHC Multimers. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 955-964.	1.1	0
9	CD163 ⁺ cytokine-producing cDC2 stimulate intratumoral type 1 T cell responses in HPV16-induced oropharyngeal cancer. , 2020, 8, e001053.		26
10	CD39 Identifies the CD4+ Tumor-Specific T-cell Population in Human Cancer. Cancer Immunology Research, 2020, 8, 1311-1321.	1.6	84
11	The Tumor Microenvironment and Immunotherapy of Oropharyngeal Squamous Cell Carcinoma. Frontiers in Oncology, 2020, 10, 545385.	1.3	14
12	Fasting mimicking diet as an adjunct to neoadjuvant chemotherapy for breast cancer in the multicentre randomized phase 2 DIRECT trial. Nature Communications, 2020, 11, 3083.	5.8	173
13	Strong vaccine responses during chemotherapy are associated with prolonged cancer survival. Science Translational Medicine, 2020, 12, .	5.8	83
14	Photochemical Internalization Enhanced Vaccination Is Safe, and Gives Promising Cellular Immune Responses to an HPV Peptide-Based Vaccine in a Phase I Clinical Study in Healthy Volunteers. Frontiers in Immunology, 2020, 11, 576756.	2.2	12
15	Blood-based kinase activity profiling: a potential predictor of response to immune checkpoint inhibition in metastatic cancer. , 2020, 8, e001607.		4
16	Long-term HPV-specific immune response after one versus two and three doses of bivalent HPV vaccination in Dutch girls. Vaccine, 2019, 37, 7280-7288.	1.7	14
17	The Anatomical Location Shapes the Immune Infiltrate in Tumors of Same Etiology and Affects Survival. Clinical Cancer Research, 2019, 25, 240-252.	3.2	45
18	Prediction the clinical outcomes of cancer patients after peptide vaccination Journal of Clinical Oncology, 2019, 37, e14295-e14295.	0.8	4

MARIJ J P WELTERS

#	Article	IF	CITATIONS
19	Development of an RNA-based kit for easy generation of TCR-engineered lymphocytes to control T-cell assay performance. Journal of Immunological Methods, 2018, 458, 74-82.	0.6	5
20	Intratumoral HPV16-Specific T Cells Constitute a Type l–Oriented Tumor Microenvironment to Improve Survival in HPV16-Driven Oropharyngeal Cancer. Clinical Cancer Research, 2018, 24, 634-647.	3.2	128
21	NKG2A Blockade Potentiates CD8ÂT Cell Immunity Induced by Cancer Vaccines. Cell, 2018, 175, 1744-1755.e15.	13.5	241
22	EGFR signaling suppresses type 1 cytokine-induced T-cell attracting chemokine secretion in head and neck cancer. PLoS ONE, 2018, 13, e0203402.	1.1	22
23	HPV16 E7 DNA tattooing: safety, immunogenicity, and clinical response in patients with HPV-positive vulvar intraepithelial neoplasia. Cancer Immunology, Immunotherapy, 2017, 66, 1163-1173.	2.0	17
24	The importance of correctly timing cancer immunotherapy. Expert Opinion on Biological Therapy, 2017, 17, 87-103.	1.4	26
25	Association of T cell responses after vaccination with HPV16 long peptides for late stage cervical cancer with prolonged survival Journal of Clinical Oncology, 2017, 35, 5525-5525.	0.8	6
26	Correlation between strength of T-cell response against HPV16 and survival after vaccination with HPV16 long peptides in combination with chemotherapy for late-stage cervical cancer Journal of Clinical Oncology, 2017, 35, 140-140.	0.8	4
27	Potential use of lymph node-derived HPV-specific T cells for adoptive cell therapy of cervical cancer. Cancer Immunology, Immunotherapy, 2016, 65, 1451-1463.	2.0	21
28	Standard radiotherapy but not chemotherapy impairs systemic immunity in non-small cell lung cancer. Oncolmmunology, 2016, 5, e1255393.	2.1	22
29	Toward harmonized phenotyping of human myeloid-derived suppressor cells by flow cytometry: results from an interim study. Cancer Immunology, Immunotherapy, 2016, 65, 161-169.	2.0	175
30	Vaccination against Oncoproteins of HPV16 for Noninvasive Vulvar/Vaginal Lesions: Lesion Clearance Is Related to the Strength of the T-Cell Response. Clinical Cancer Research, 2016, 22, 2342-2350.	3.2	132
31	A beneficial tumor microenvironment in oropharyngeal squamous cell carcinoma is characterized by a high T cell and low IL-17+ cell frequency. Cancer Immunology, Immunotherapy, 2016, 65, 393-403.	2.0	77
32	A phase I study in patients with a human papillomavirus type 16 positive oropharyngeal tumor treated with second generation synthetic long peptide vaccine conjugated to a defined adjuvant Journal of Clinical Oncology, 2016, 34, TPS3113-TPS3113.	0.8	9
33	TLR2 ligand-synthetic long peptide conjugates effectively stimulate tumor-draining lymph node T cells of cervical cancer patients. Oncotarget, 2016, 7, 67087-67100.	0.8	43
34	The effects of short-term fasting on tolerance to (neo) adjuvant chemotherapy in HER2-negative breast cancer patients: a randomized pilot study. BMC Cancer, 2015, 15, 652.	1.1	170
35	Human papillomavirus 16-specific cell-mediated immunity in children born to mothers with incident cervical intraepithelial neoplasia (CIN) and to those constantly HPV negative. Journal of Translational Medicine, 2015, 13, 370.	1.8	17
36	Guidelines for the automated evaluation of Elispot assays. Nature Protocols, 2015, 10, 1098-1115.	5.5	74

#	Article	IF	CITATIONS
37	Monitoring regulatory T cells in clinical samples: consensus on an essential marker set and gating strategy for regulatory T cell analysis by flow cytometry. Cancer Immunology, Immunotherapy, 2015, 64, 1271-1286.	2.0	161
38	Thinking Outside the Gate: Single-Cell Assessments in Multiple Dimensions. Immunity, 2015, 42, 591-592.	6.6	67
39	Vaccine-Induced Tumor Necrosis Factor–Producing T Cells Synergize with Cisplatin to Promote Tumor Cell Death. Clinical Cancer Research, 2015, 21, 781-794.	3.2	81
40	A phase 1/2 study combining gemcitabine, Pegintron and p53 SLP vaccine in patients with platinum-resistant ovarian cancer. Oncotarget, 2015, 6, 32228-32243.	0.8	58
41	Anti–CTLA-4 therapy broadens the melanoma-reactive CD8 ⁺ T cell response. Science Translational Medicine, 2014, 6, 254ra128.	5.8	325
42	Mesenchymal Stromal Cell Therapy Is Associated With Increased Adenovirus-Associated but Not Cytomegalovirus-Associated Mortality in Children With Severe Acute Graft-Versus-Host Disease. Stem Cells Translational Medicine, 2014, 3, 899-910.	1.6	12
43	Addition of interferonâ€Î± to the p53‣LP® vaccine results in increased production of interferonâ€Î³ in vaccinated colorectal cancer patients: A phase I/II clinical trial. International Journal of Cancer, 2013, 132, 1581-1591.	2.3	50
44	HPV16 synthetic long peptide (HPV16-SLP) vaccination therapy of patients with advanced or recurrent HPV16-induced gynecological carcinoma, a phase II trial. Journal of Translational Medicine, 2013, 11, 88.	1.8	165
45	The simultaneous ex vivo detection of low-frequency antigen-specific CD4+ and CD8+ T-cell responses using overlapping peptide pools. Cancer Immunology, Immunotherapy, 2012, 61, 1953-1963.	2.0	23
46	Harmonization of the intracellular cytokine staining assay. Cancer Immunology, Immunotherapy, 2012, 61, 967-978.	2.0	47
47	Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11895-11899.	3.3	215
48	Vaccination against HPV-16 Oncoproteins for Vulvar Intraepithelial Neoplasia. New England Journal of Medicine, 2009, 361, 1838-1847.	13.9	970
49	Human papilloma virus specific T cells infiltrating cervical cancer and draining lymph nodes show remarkably frequent use of HLAâ€ĐQ and –DP as a restriction element. International Journal of Cancer, 2008, 122, 486-494.	2.3	74
50	Induction of Tumor-Specific CD4+ and CD8+ T-Cell Immunity in Cervical Cancer Patients by a Human Papillomavirus Type 16 E6 and E7 Long Peptides Vaccine. Clinical Cancer Research, 2008, 14, 178-187.	3.2	346
51	Phase I Immunotherapeutic Trial with Long Peptides Spanning the E6 and E7 Sequences of High-Risk Human Papillomavirus 16 in End-Stage Cervical Cancer Patients Shows Low Toxicity and Robust Immunogenicity. Clinical Cancer Research, 2008, 14, 169-177.	3.2	286
52	Surgery followed by Persistence of High-Grade Squamous Intraepithelial Lesions Is Associated with the Induction of a Dysfunctional HPV16-Specific T-Cell Response. Clinical Cancer Research, 2008, 14, 7188-7195.	3.2	39
53	T-regulatory cells in tumour-specific vaccination strategies. Expert Opinion on Biological Therapy, 2008, 8, 1365-1379.	1.4	17
54	Association of cervical cancer with the presence of CD4 ⁺ regulatory T cells specific for human papillomavirus antigens. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12087-12092.	3.3	201

MARIJ J P WELTERS

#	Article	IF	CITATIONS
55	Multiple CD4 and CD8 T-cell activation parameters predict vaccine efficacy in vivo mediated by individual DC-activating agonists. Vaccine, 2007, 25, 1379-1389.	1.7	46
56	Detection of human papillomavirus type 18 E6 and E7-specific CD4+ T-helper 1 immunity in relation to health versus disease. International Journal of Cancer, 2006, 118, 950-956.	2.3	59
57	Chemically synthesized protein as tumour-specific vaccine: immunogenicity and efficacy of synthetic HPV16 E7 in the TC-1 mouse tumour model. Vaccine, 2004, 23, 305-311.	1.7	13
58	Frequent display of human papillomavirus type 16 E6-specific memory t-Helper cells in the healthy population as witness of previous viral encounter. Cancer Research, 2003, 63, 636-41.	0.4	166