Zoya Zaheer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7089811/publications.pdf Version: 2024-02-01

ΖΟΥΛ ΖΛΗΕΕΡ

#	Article	IF	CITATIONS
1	Biogenic fabrication of silver nanoparticles, oxidative dissolution and antimicrobial activities. Journal of Saudi Chemical Society, 2022, 26, 101414.	5.2	7
2	Silver-Cobalt bimetallic nanoparticles to the generation of hydrogen from formic acid decomposition. Arabian Journal of Chemistry, 2022, 15, 103795.	4.9	6
3	Chitosan and cetyltrimethylammonium bromide capped Iridium-silver bimetallic nanoparticles: A comparative study. Journal of Molecular Liquids, 2022, 358, 119182.	4.9	3
4	Chitosan capped noble metal doped CeO2 nanomaterial: Synthesis, and their enhanced catalytic activities. International Journal of Biological Macromolecules, 2021, 166, 1258-1271.	7.5	17
5	2-Hydroxy-1, 4-napthoquinone solubilization, thermodynamics and adsorption kinetics with surfactant. Chinese Journal of Chemical Engineering, 2021, 32, 212-223.	3.5	9
6	Gold@Silver bimetallic nanoparticles: fabrication and removal of toxic chromium(VI). Journal of Materials Science: Materials in Electronics, 2021, 32, 11043-11058.	2.2	6
7	Chitosan-capped silver nanoparticles: fabrication, oxidative dissolution, sensing properties, and antimicrobial activity. Journal of Polymer Research, 2021, 28, 1.	2.4	9
8	Interactions of Ag+ ions and Ag-nanoparticles with protein. A comparative and multi spectroscopic investigation. Journal of Molecular Liquids, 2021, 335, 116226.	4.9	6
9	Role of ionic surfactants on the nucleation and growth of silver nanoparticles. Journal of Molecular Liquids, 2021, 341, 117309.	4.9	16
10	Photo-oxidative Decolorization of Brilliant Blue with AgNPs as an Activator in the Presence of K ₂ S ₂ O ₈ and NaBH ₄ . ACS Omega, 2021, 6, 27510-27526.	3.5	24
11	Sennoside A drug capped biogenic fabrication of silver nanoparticles and their antibacterial and antifungal activities. Saudi Pharmaceutical Journal, 2020, 28, 1035-1048.	2.7	15
12	Fabrication of zinc/silver binary nanoparticles, their enhanced microbial and adsorbing properties. Arabian Journal of Chemistry, 2020, 13, 7921-7938.	4.9	11
13	Capping action of ionic surfactants on the nucleation of lawsone-Ag+ redox system. Journal of Molecular Liquids, 2020, 309, 113214.	4.9	8
14	Rose cyanidin 3,5-di-O-glucoside-assisted gold nanoparticles, their antiradical and photocatalytic activities. Journal of Materials Science: Materials in Electronics, 2020, 31, 8780-8795.	2.2	3
15	Betanin assisted synthesis of betanin@silver nanoparticles and their enhanced adsorption and biological activities. Food Chemistry, 2019, 298, 125014.	8.2	34
16	Adsorption, equilibrium isotherm, and thermodynamic studies to the removal of acid orange 7. Materials Chemistry and Physics, 2019, 232, 109-120.	4.0	54
17	Adsorption of methyl red on biogenic Ag@Fe nanocomposite adsorbent: Isotherms, kinetics and mechanisms. Journal of Molecular Liquids, 2019, 283, 287-298.	4.9	81
18	Eco-friendly walnut shell powder based facile fabrication of biogenic Ag-nanodisks, and their interaction with bovine serum albumin. Journal of Photochemistry and Photobiology B: Biology, 2019, 193, 8-17.	3.8	14

Zoya Zaheer

#	Article	IF	CITATIONS
19	Sodium dodecyl sulphate-assisted synthesis, optical properties and catalytic activities of silver/manganese dioxide nanocomposites. Journal of Molecular Liquids, 2018, 258, 310-318.	4.9	6
20	Biogenic synthesis, optical, catalytic, and in vitro antimicrobial potential of Ag-nanoparticles prepared using Palm date fruit extract. Journal of Photochemistry and Photobiology B: Biology, 2018, 178, 584-592.	3.8	48
21	Eco-friendly green synthesis of Ag@Fe bimetallic nanoparticles: Antioxidant, antimicrobial and photocatalytic degradation of bromothymol blue. Journal of Photochemistry and Photobiology B: Biology, 2018, 185, 143-152.	3.8	92
22	Seedless synthesis of nanocomposites, optical properties, and effects of additives on their surface resonance plasmon bands. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 182, 87-94.	3.9	4
23	Anionic-micelles assisted oxidation of tartaric acid by permanganate: A kinetic and mechanistic approach. Journal of Molecular Liquids, 2017, 229, 436-442.	4.9	4
24	Cetyltrimethylammonium bromide assisted synthesis of silver nanoparticles and their catalytic activity. Journal of Molecular Liquids, 2017, 242, 1035-1041.	4.9	12
25	Effects of cationic and anionic micelles on the morphology of biogenic silver nanoparticles, and their catalytic activity for congo red. Journal of Molecular Liquids, 2016, 220, 364-369.	4.9	9
26	Reversible encapsulation of silver nanoparticles into the helix of amylose (water soluble starch). RSC Advances, 2016, 6, 60513-60521.	3.6	10
27	Growth of Ag-nanoparticles in an aqueous solution and their antimicrobial activities against Gram positive, Gram negative bacterial strains and Candida fungus. Bioprocess and Biosystems Engineering, 2016, 39, 575-584.	3.4	34
28	Bio-conjugated silver nanoparticles: From Ocimum sanctum and role of cetyltrimethyl ammonium bromide. Colloids and Surfaces B: Biointerfaces, 2013, 108, 90-94.	5.0	35
29	Formation, characterisation and redox behaviour of water-soluble colloidal manganese dioxide. Journal of Experimental Nanoscience, 2012, 7, 74-84.	2.4	4
30	Preparation, characterisation and kinetics of corn-shaped Ag nanoparticles. Journal of Experimental Nanoscience, 2012, 7, 366-377.	2.4	5
31	Silver nanoparticles formation using tyrosine in presence cetyltrimethylammonium bromide. Colloids and Surfaces B: Biointerfaces, 2012, 89, 211-215.	5.0	28
32	Silver nanoparticles to self-assembled films: Green synthesis and characterization. Colloids and Surfaces B: Biointerfaces, 2012, 90, 48-52.	5.0	103
33	Nucleation and growth kinetics of silver nanoparticles prepared by glutamic acid in micellar media. International Journal of Chemical Kinetics, 2012, 44, 680-691.	1.6	16
34	Multi-branched flower-like silver nanoparticles: Preparation and characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 427-431.	4.7	29
35	Preparation of silver nanoparticles using tryptophan and its formation mechanism. Colloids and Surfaces B: Biointerfaces, 2010, 81, 587-592.	5.0	32
36	A Kinetic and Mechanistic Study of the Reaction Between and Methionine: Evidence for the Formation of Water Soluble Colloidal MnO2. Journal of Dispersion Science and Technology, 2009, 30, 104-109.	2.4	5

#	Article	IF	CITATIONS
37	Sub- and post-micellar catalytic and inhibitory effects of cetlytrimethylammonium bromide in the permanganate oxidation of phenylalanine. Colloids and Surfaces B: Biointerfaces, 2009, 69, 251-256.	5.0	24