Johnson K Efavi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7089730/publications.pdf

Version: 2024-02-01

687220 642610 36 569 13 23 citations h-index g-index papers 36 36 36 678 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Modified halloysite nanoclay as a vehicle for sustained drug delivery. Heliyon, 2018, 4, e00689.	1.4	67
2	0.86-nm CET Gate Stacks With Epitaxial\$hboxGd_2hboxO_3\$High-\$k\$Dielectrics and FUSI NiSi Metal Electrodes. IEEE Electron Device Letters, 2006, 27, 814-816.	2.2	43
3	CMOS integration of epitaxial Gd2O3 high-k gate dielectrics. Solid-State Electronics, 2006, 50, 979-985.	0.8	41
4	Characterization and Evaluation of Zeolite A/Fe ₃ O ₄ Nanocomposite as a Potential Adsorbent for Removal of Organic Molecules from Wastewater. Journal of Chemistry, 2019, 2019, 1-13.	0.9	36
5	Nanoscale TiN metal gate technology for CMOS integration. Microelectronic Engineering, 2006, 83, 1551-1554.	1.1	32
6	The effect of NaOH catalyst concentration and extraction time on the yield and properties of Citrullus vulgaris seed oil as a potential biodiesel feed stock. South African Journal of Chemical Engineering, 2018, 25, 98-102.	1.2	32
7	Ag2CO3-halloysite nanotubes composite with enhanced removal efficiency for water soluble dyes. Heliyon, 2019, 5, e01969.	1.4	28
8	Synthesis of TiO ₂ â \in "Ag ₃ PO ₄ photocatalyst material with high adsorption capacity and photocatalytic activity: application in the removal of dyes and pesticides. RSC Advances, 2021, 11, 17032-17045.	1.7	27
9	Characterisation and identification of local kaolin clay from Ghana: A potential material for electroporcelain insulator fabrication. Applied Clay Science, 2017, 150, 125-130.	2.6	25
10	Synthesis and characterisation of zeolite-A and Zn-exchanged zeolite-A based on natural aluminosilicates and their potential applications. Cogent Engineering, 2018, 5, 1440480.	1.1	23
11	Synthesis and kinetic adsorption characteristics of Zeolite/CeO2 nanocomposite. Scientific African, 2020, 7, e00257.	0.7	23
12	Investigation of MOS capacitors and SOI–MOSFETs with epitaxial gadolinium oxide (Gd2O3) and titanium nitride (TiN) electrodes. Solid-State Electronics, 2007, 51, 617-621.	0.8	18
13	Tungsten work function engineering for dual metal gate nano-CMOS. Journal of Materials Science: Materials in Electronics, 2005, 16, 433-436.	1.1	17
14	Photocatalytic degradation of fractionated crude oil: potential application in oil spill remediation. Cogent Engineering, 2020, 7, 1744944.	1.1	15
15	Synthesis and Application of Fe-Doped TiO ₂ -Halloysite Nanotubes Composite and Their Potential Application in Water Treatment. Advances in Materials Science and Engineering, 2019, 2019, 1-15.	1.0	13
16	Effect of Magnesium and Sodium Salts on the Interfacial Characteristics of Soybean Lecithin Dispersants. Industrial & Disp	1.8	12
17	Introduction of crystalline high-k gate dielectrics in a CMOS process. Journal of Non-Crystalline Solids, 2005, 351, 1885-1889.	1.5	11
18	Scalable gate first process for silicon on insulator metal oxide semiconductor field effect transistors with epitaxial high-k dielectrics. Journal of Vacuum Science & Technology B, 2006, 24, 710.	1.3	11

#	Article	IF	CITATIONS
19	Formation of Chitosan Nanoparticles Using Deacetylated Chitin Isolated from Freshwater Algae and Locally Synthesized Zeolite A and their Influence on Cancer Cell Growth. Journal of Nano Research, 0, 48, 156-170.	0.8	11
20	Low-temperature conductance measurements of surface states in HfO2–Si structures with different gate materials. Materials Science in Semiconductor Processing, 2006, 9, 980-984.	1.9	10
21	Synthesis and microstructural characterization of kaolin-polyethylene composites. Polymer Composites, 2014, 35, 1507-1515.	2.3	9
22	Nickel-silicide process for ultra-thin-body SOI-MOSFETs. Microelectronic Engineering, 2005, 82, 497-502.	1.1	8
23	Impact of Al-, Ni-, TiN-, and Mo-metal gates on MOCVD-grown HfO2 and ZrO2 high-κ dielectrics. Microelectronics Reliability, 2007, 47, 536-539.	0.9	8
24	Processing and evaluation of metal gate/high-l̂º/Si capacitors incorporating Al, Ni, TiN, and Mo as metal gate, and ZrO2 and HfO2 as high-l̂º dielectric. Microelectronic Engineering, 2007, 84, 1635-1638.	1.1	7
25	Comparison of metal gate electrodes on MOCVD HfO2. Microelectronics Reliability, 2005, 45, 953-956.	0.9	6
26	Potential Application of Dioctyl Sodium Sulfosuccinate Salt (DOSS)–Saponin Binary Dispersant in Oil Spill Remediation: Synergistic Interaction Between DOSS and Saponin. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	6
27	Investigation of high-K gate stacks with epitaxial Gd2O3 and FUSI NiSi metal gates down to CET=0.86nm. Materials Science in Semiconductor Processing, 2006, 9, 904-908.	1.9	5
28	A study of polybromide chain formation using carbon nanomaterials via density functional theory approach. Cogent Engineering, 2016, 3, 1261509.	1.1	5
29	Characterization and Inhibitory Effects of Magnetic Iron Oxide Nanoparticles Synthesized from Plant Extracts on HeLa Cells. International Journal of Biomaterials, 2020, 2020, 1-11.	1.1	4
30	Influence of preferred orientation on the bioactivity of hydroxyapatite: a potential tooth repair and implant surface coating material. Ceramica, 2020, 66, 340-346.	0.3	4
31	Investigation of NiAlN as gate-material for submicron CMOS technology. Microelectronic Engineering, 2004, 76, 354-359.	1.1	3
32	Development and Comparative Analysis of Aluminosilicate Based Ceramic Filters for Ground Water Defluoridation. Advanced Materials Research, 2014, 936, 822-828.	0.3	2
33	Synthesis and Pore Structure Characterisation of Novel Mesoporous MgO-CeO ₂ /SBA-15 as a Potential Catalyst Support. Materials Science Forum, 2017, 900, 40-45.	0.3	2
34	Structural and Electronic properties of PVK/C60 Nanoheterostructure interfaces- A DFT Approach. Surfaces and Interfaces, 2020, 20, 100556.	1.5	2
35	Monodispersed AgNPs Synthesized from the Nanofactories of Theobroma cacao (Cocoa) Leaves and Pod Husk and Their Antimicrobial Activity. International Journal of Biomaterials, 2022, 2022, 1-9.	1.1	2
36	Impact of Al, Ni, and TiN Metal Gates On ZrO2-MOS Capacitors. ECS Transactions, 2006, 1, 507-515.	0.3	1