Shuang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7089667/publications.pdf

Version: 2024-02-01

516710 580821 66 852 16 25 citations g-index h-index papers 70 70 70 643 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Temperature Compensation of Optical Fiber Current Sensors With a Static Bias. IEEE Sensors Journal, 2022, 22, 352-356.	4.7	13
2	Environment-Robust Polarization-Based Phase-Shift Dynamic Demodulation Method for Optical Fiber Acoustic Sensor. IEEE Photonics Journal, 2022, 14, 1-8.	2.0	1
3	Reflective SFT-FBG Hybrid Micro-Probe for Simultaneous Measurement of Relative Humidity and Temperature. IEEE Photonics Journal, 2022, 14, 1-6.	2.0	4
4	Real-Time Self-Calibrating Phase-Shifted Demodulation Method Based on Polarized Low-Coherence Interference for Optical Fiber Acoustic Sensor. IEEE Sensors Journal, 2022, 22, 8537-8543.	4.7	4
5	Ultrahighâ€Resolution Optical Fiber Thermometer Based on Microcavity Optoâ€Mechanical Oscillation. Advanced Photonics Research, 2022, 3, .	3.6	3
6	Rapid and wide-range pressure measurement at high-temperature using an intensity-compensation interrogation method. Optics and Lasers in Engineering, 2022, 157, 107116.	3.8	6
7	A Fiber-Optic Accelerometer Based on Extrinsic Fabry-Perot Interference for Low Frequency Micro-Vibration Measurement. IEEE Photonics Journal, 2022, 14, 1-6.	2.0	5
8	Hybrid Sapphire Dual-Fabryâ€"Perot-Cavities Sensor for High Temperature and Refractive Index Measurement. Journal of Lightwave Technology, 2021, 39, 3911-3918.	4.6	14
9	Ultrasensitive Label-Free Biosensor Based on the Graphene-Oxide-Coated-U-Bent Long-Period Fiber Grating Inscribed in a Two-Mode Fiber. Journal of Lightwave Technology, 2021, 39, 4013-4019.	4.6	16
10	All-sapphire-based fiber-optic pressure sensor for high-temperature applications based on wet etching. Optics Express, 2021, 29, 4139.	3.4	18
11	All-silicon dual-cavity fiber-optic pressure sensor with ultralow pressure-temperature cross-sensitivity and wide working temperature range. Photonics Research, 2021, 9, 521.	7.0	38
12	Mechanical Filter-Based Differential Pressure Fiber-Optic Fabry-Perot Infrasound Sensor. IEEE Photonics Journal, 2021, 13, 1-10.	2.0	1
13	Review of Fiber Mechanical and Thermal Multi-Parameter Measurement Technologies and Instrumentation. Journal of Lightwave Technology, 2021, 39, 3724-3739.	4.6	14
14	Double-Antibody Sandwich Immunoassay and Plasmonic Coupling Synergistically Improved Long-Range SPR Biosensor with Low Detection Limit. Nanomaterials, 2021, 11, 2137.	4.1	5
15	Optical Fiber Distributed Vibration Sensing Using Grayscale Image and Multi-Class Deep Learning Framework for Multi-Event Recognition. IEEE Sensors Journal, 2021, 21, 19112-19120.	4.7	13
16	Real-Time Pressure Measurement Method Based on Rapid Phase Demodulation of Multi-Cavities F-P Sensor. IEEE Sensors Journal, 2021, 21, 26624-26630.	4.7	8
17	Dynamic Phase Extraction in an Ameliorated Distributed Vibration Sensor Using a Highly Stable Homodyne Detection. IEEE Sensors Journal, 2021, 21, 27005-27014.	4.7	7
18	The sensitivity enhancement based on the Au $\&$ black phosphorus composite film for the surface plasma resonance fiber sensor. , 2021, , .		O

#	Article	IF	Citations
19	Theoretical Investigation of Optical Fiber Waveguide Coupled Surface Plasmon Resonance Sensor with Narrow Full Width at Half-Maximum. , $2021,\ldots$		2
20	MoSe ₂ -Au Based Sensitivity Enhanced Optical Fiber Surface Plasmon Resonance Biosensor for Detection of Goat-Anti-Rabbit IgG. IEEE Access, 2020, 8, 660-668.	4.2	33
21	Low Refractive-Index and Temperature Sensitive Torsion Sensor Based on Cascaded Long-Period Fiber Gratings Inscribed in a Four-Mode Fiber. IEEE Access, 2020, 8, 82266-82272.	4.2	9
22	Study on the Sensitization Effect of Flywheel-Like Diaphragm on Fiber-Optic Fabry-Perot Acoustic Sensor. IEEE Access, 2020, 8, 99286-99293.	4.2	6
23	A Novel Mach–Zehnder Interferometric Temperature Sensor Based on a Symmetrical Double-Grooved Structure. IEEE Sensors Journal, 2020, 20, 14850-14856.	4.7	10
24	Refractometric Sensitivity Enhancement of Weakly Tilted Fiber Bragg Grating Integrated with Black Phosphorus. Nanomaterials, 2020, 10, 1423.	4.1	7
25	Dual-Frequency CARS Excitation Source With Two Independent-Tunable Stokes Wavelengths Using PM-PCF and Vector Adjustment. Journal of Lightwave Technology, 2020, 38, 2392-2399.	4.6	7
26	Coherent OTDR Using Flexible All-Digital Orthogonal Phase Code Pulse for Distributed Sensing. IEEE Access, 2020, 8, 85395-85400.	4.2	9
27	Refractive Index Sensor Based on Graphene Oxide-Coated Long-Period Fiber Grating Inscribed in a Two-Mode Fiber. IEEE Access, 2020, 8, 109028-109037.	4.2	13
28	A Method of HCN Gas Spectrum Denoising and Baseline Removal Used for FBG Interrogation. IEEE Access, 2020, 8, 62706-62713.	4.2	1
29	A Demodulation Method of Spatial Domain for Low-Coherence Interferometry With High Accuracy and Adaptability. IEEE Photonics Journal, 2020, 12, 1-11.	2.0	1
30	Orthogonal Phase Demodulation of Optical Fiber Fabry-Perot Interferometer Based on Birefringent Crystals and Polarization Technology. IEEE Photonics Journal, 2020, 12, 1-9.	2.0	10
31	Flywheel-like diaphragm-based fiber-optic Fabry–Perot frequency tailored acoustic sensor. Journal Physics D: Applied Physics, 2020, 53, 415102.	2.8	20
32	All optic-fiber coupled plasmon waveguide resonance sensor using ZrS ₂ based dielectric layer. Optics Express, 2020, 28, 11280.	3.4	11
33	Composite wavelength tuning for precision Raman resonance in soliton self-frequency shift-based coherent anti-Stokes Raman scattering. Applied Physics Express, 2020, 13, 092002.	2.4	2
34	Multi-layer optical fiber surface plasmon resonance biosensor based on a sandwich structure of polydopamine-MoSe ₂ @Au nanoparticles-polydopamine. Biomedical Optics Express, 2020, 11, 6840.	2.9	14
35	Fringe-Distortion-Correction for Polarized Low-Coherence Interferometry With Phosphor-Based LED. Journal of Lightwave Technology, 2019, 37, 3557-3562.	4.6	3
36	A Combined Events Recognition Scheme Using Hybrid Features in Distributed Optical Fiber Vibration Sensing System. IEEE Access, 2019, 7, 105609-105616.	4.2	21

#	Article	IF	CITATIONS
37	Femtosecond Pulse Temporal Overlap Estimation and Adjustment in SSFS-Based CARS System. IEEE Access, 2019, 7, 131317-131325.	4.2	4
38	Long-Sensing-Length Strain Sensor Based on Optical Fiber Fabry-Perot Interferometer With HCF-SMF Structure. IEEE Photonics Journal, 2019, 11, 1-8.	2.0	7
39	A Compact Fiber Optic Fabry–Perot Sensor for Simultaneous Measurement of Acoustic and Temperature. IEEE Photonics Journal, 2019, 11, 1-10.	2.0	14
40	Self-Filtering High-Resolution Dual-Sapphire-Fiber-Based High-Temperature Sensor. Journal of Lightwave Technology, 2019, 37, 1408-1414.	4.6	21
41	High-Sensitivity Temperature Sensor Based on Microsphere Cavity in Super Larger Thermo-Optic Coefficient Germanium-core Fiber. IEEE Access, 2019, 7, 182658-182663.	4.2	4
42	Batch-producible Hybrid Fabry-Perot Fiber-Optic Sensors for Dual-parameters Measurement., 2019,,.		0
43	Highly Sensitive Temperature Sensor Based on Hollow Microsphere for Ocean Application. IEEE Photonics Journal, 2019, 11, 1-8.	2.0	4
44	Theoretical and Experimental Investigation of an All-Fiber Waveguide Coupled Surface Plasmon Resonance Sensor With Au–ZnO–Au Sandwich Structure. IEEE Access, 2019, 7, 169961-169968.	4.2	4
45	Fiber Optic Fabry-Perot Pressure Sensor With Embedded MEMS Micro-Cavity for Ultra-High Pressure Detection. Journal of Lightwave Technology, 2019, 37, 2719-2725.	4.6	47
46	Hierarchical assembly of gold nanorod stripe patterns for sensing and cells alignment. Nanotechnology, 2019, 30, 175302.	2.6	6
47	High-accuracy hybrid fiber-optic Fabry-Pérot sensor based on MEMS for simultaneous gas refractive-index and temperature sensing. Optics Express, 2019, 27, 4204.	3.4	33
48	Fiber optical temperature compensated anemometer based on dual Fabry-Perot sensors with sealed cavity. Optics Express, 2019, 27, 18157.	3.4	15
49	An Improved Optical Fiber Remote Sensing Method Based on Polarized Low-Coherence Interferometry. IEEE Photonics Journal, 2018, 10, 1-9.	2.0	4
50	Simultaneous Measurement of Pressure and Temperature Based on Adjustable Line Scanning Polarized Low-Coherence Interferometry With Compensation Plate. IEEE Photonics Journal, 2018, 10, 1-9.	2.0	3
51	Self-marked HCN gas based FBG demodulation in thermal cycling process for aerospace environment. Optics Express, 2018, 26, 22944.	3.4	18
52	Temperature Insensitive and Integrated Differential Pressure Sensor for Liquid Level Sensing Based on an Optical Fiber Fabry–Perot Interferometer. IEEE Photonics Journal, 2018, 10, 1-8.	2.0	13
53	Optical fiber Fabry–Perot interferometer based on phase-shifting technique and birefringence crystals. Optics Express, 2018, 26, 21606.	3.4	13
54	Fiber Optic Magnetic Field Sensor Based on Magnetic Nanoparticle Assembly in Microcapillary Ring Resonator. IEEE Photonics Journal, 2017, 9, 1-9.	2.0	16

#	Article	IF	CITATION
55	Accelerating nonlinear reconstruction in laminar optical tomography by use of recursive SVD inversion. Biomedical Optics Express, 2017, 8, 4275.	2.9	1
56	Non-destructive residual pressure self-measurement method for the sensing chip of optical Fabry-Perot pressure sensor. Optics Express, 2017, 25, 31937.	3.4	12
57	Polarized low-coherence interferometer based on a matrix CCD and birefringence crystal with a two-dimensional angle. Optics Express, 2017, 25, 15977.	3.4	9
58	Noncontact Ultrasonic Detection in Low-Pressure Carbon Dioxide Medium Using High Sensitivity Fiber-Optic Fabry–Perot Sensor System. Journal of Lightwave Technology, 2017, 35, 5079-5085.	4.6	31
59	Assembly-Free-Based Fiber-Optic Micro-Michelson Interferometer for High Temperature Sensing. IEEE Photonics Technology Letters, 2016, 28, 625-628.	2.5	25
60	Differential-pressure-based fiber-optic temperature sensor using Fabry–Perot interferometry. Optics Letters, 2015, 40, 1049.	3.3	45
61	Birefringence-Dispersion-Induced Frequency Domain Nonlinearity Compensation for Polarized Low-Coherence Interferometry Demodulation. Journal of Lightwave Technology, 2015, 33, 4842-4848.	4.6	9
62	Batch-Producible Fiber-Optic Fabry–Pérot Sensor for Simultaneous Pressure and Temperature Sensing. IEEE Photonics Technology Letters, 2014, 26, 2070-2073.	2.5	55
63	Zero-fringe demodulation method based on location-dependent birefringence dispersion in polarized low-coherence interferometry. Optics Letters, 2014, 39, 1827.	3.3	23
64	Self-Referenced Residual Pressure Measurement Method for Fiber-Optic Pressure Sensor Chip. IEEE Photonics Technology Letters, 2014, 26, 957-960.	2.5	10
65	Birefringence dispersion compensation demodulation algorithm for polarized low-coherence interferometry. Optics Letters, 2013, 38, 3169.	3.3	18
66	A polarized low-coherence interferometry demodulation algorithm by recovering the absolute phase of a selected monochromatic frequency. Optics Express, 2012, 20, 18117.	3.4	39