Margot Ernst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7089603/publications.pdf

Version: 2024-02-01

331259 301761 1,788 68 21 citations h-index g-index papers

75 75 75 1775 docs citations times ranked citing authors all docs

39

#	Article	IF	CITATIONS
1	The Benzodiazepine Binding Sites of GABAA Receptors. Trends in Pharmacological Sciences, 2018, 39, 659-671.	4.0	177
2	Diazepam-bound GABAA receptor models identify new benzodiazepine binding-site ligands. Nature Chemical Biology, 2012, 8, 455-464.	3.9	175
3	Comparative Models of GABAA Receptor Extracellular and Transmembrane Domains: Important Insights in Pharmacology and Function. Molecular Pharmacology, 2005, 68, 1291-1300.	1.0	132
4	Pentameric ligand-gated ion channel ELIC is activated by GABA and modulated by benzodiazepines. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3028-34.	3.3	120
5	The GABA _A Receptor α+βâ^' Interface: A Novel Target for Subtype Selective Drugs. Journal of Neuroscience, 2011, 31, 870-877.	1.7	110
6	Structural Studies of GABAA Receptor Binding Sites: Which Experimental Structure Tells us What?. Frontiers in Molecular Neuroscience, 2016, 9, 44.	1.4	76
7	A novel GABA _A receptor pharmacology: drugs interacting with the α ⁺ β ^{â€} interface. British Journal of Pharmacology, 2012, 166, 476-485.	2.7	75
8	Subtype selectivity of $\hat{l}\pm\hat{l}^2\hat{a}$ site ligands of <scp>GABA_A</scp> receptors: identification of the first highly specific positive modulators at $\hat{l}\pm6\hat{l}^22/3\hat{l}^32$ receptors. British Journal of Pharmacology, 2013, 169, 384-399.	2.7	48
9	Identification of novel positive allosteric modulators and null modulators at the $\langle scp \rangle GABA \langle sub \rangle \langle scp \rangle$ receptor $\hat{l}_{\pm}+\hat{l}_{\pm}\hat$	2.7	47
10	Affinity of various benzodiazepine site ligands in mice with a point mutation in the GABAA receptor \hat{l}^32 subunit. Biochemical Pharmacology, 2004, 68, 1621-1629.	2.0	45
11	Synthesis and Characterization of a Novel Î ³ -Aminobutyric Acid Type A (GABA _A) Receptor Ligand That Combines Outstanding Metabolic Stability, Pharmacokinetics, and Anxiolytic Efficacy. Journal of Medicinal Chemistry, 2016, 59, 10800-10806.	2.9	43
12	Design and Synthesis of Novel Deuterated Ligands Functionally Selective for the \hat{I}^3 -Aminobutyric Acid Type A Receptor (GABA _A R) $\hat{I}\pm 6$ Subtype with Improved Metabolic Stability and Enhanced Bioavailability. Journal of Medicinal Chemistry, 2018, 61, 2422-2446.	2.9	40
13	First <i>In Vivo</i> Testing of Compounds Targeting Group 3 Medulloblastomas Using an Implantable Microdevice as a New Paradigm for Drug Development. Journal of Biomedical Nanotechnology, 2016, 12, 1297-1302.	0.5	36
14	α subunits in GABAA receptors are dispensable for GABA and diazepam action. Scientific Reports, 2017, 7, 15498.	1.6	31
15	Ester to amide substitution improves selectivity, efficacy and kinetic behavior of a benzodiazepine positive modulator of GABAA receptors containing the α5 subunit. European Journal of Pharmacology, 2016, 791, 433-443.	1.7	30
16	Proximity-accelerated Chemical Coupling Reaction in the Benzodiazepine-binding Site of Î ³ -Aminobutyric Acid Type A Receptors. Journal of Biological Chemistry, 2007, 282, 26316-26325.	1.6	29
17	Different Benzodiazepines Bind with Distinct Binding Modes to GABA _A Receptors. ACS Chemical Biology, 2018, 13, 2033-2039.	1.6	28
18	Development of GABA _A Receptor Subtype-Selective Imidazobenzodiazepines as Novel Asthma Treatments. Molecular Pharmaceutics, 2016, 13, 2026-2038.	2.3	27

#	Article	IF	CITATIONS
19	Molecular analysis of the site for 2â€arachidonylglycerol (2â€∢scp>AG) on the β ₂ subunit of <scp>GABA_A</scp> receptors. Journal of Neurochemistry, 2013, 126, 29-36.	2.1	26
20	Molecular tools for GABAA receptors: High affinity ligands for \hat{l}^21 -containing subtypes. Scientific Reports, 2017, 7, 5674.	1.6	25
21	Cerebellar α ₆ â€subunitâ€containing GABA _A receptors: a novel therapeutic target for disrupted prepulse inhibition in neuropsychiatric disorders. British Journal of Pharmacology, 2018, 175, 2414-2427.	2.7	25
22	Towards functional selectivity for $\hat{l}\pm6\hat{l}^23\hat{l}^32$ GABA _A receptors: a series of novel pyrazoloquinolinones. British Journal of Pharmacology, 2018, 175, 419-428.	2.7	25
23	Trigeminal neuropathic pain development and maintenance in rats are suppressed by a positive modulator of α6 GABA _A receptors. European Journal of Pain, 2019, 23, 973-984.	1.4	24
24	Pharmacological and antihyperalgesic properties of the novel $\hat{l}\pm2/3$ preferring GABA A receptor ligand MP-III-024. Brain Research Bulletin, 2017, 131, 62-69.	1.4	23
25	Targeting the \hat{I}^3 -Aminobutyric Acid A Receptor $\hat{I}\pm 4$ Subunit in Airway Smooth Muscle to Alleviate Bronchoconstriction. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 546-553.	1.4	22
26	Allosteric GABAA Receptor Modulatorsâ€"A Review on the Most Recent Heterocyclic Chemotypes and Their Synthetic Accessibility. Molecules, 2020, 25, 999.	1.7	22
27	Negative allosteric modulation of alpha 5-containing GABAA receptors engenders antidepressant-like effects and selectively prevents age-associated hyperactivity in tau-depositing mice. Psychopharmacology, 2018, 235, 1151-1161.	1.5	21
28	Accelerated Discovery of Novel Benzodiazepine Ligands by Experiment-Guided Virtual Screening. ACS Chemical Biology, 2014, 9, 1854-1859.	1.6	19
29	The $\hat{l}\pm 6$ subunit-containing GABAA receptor: A novel drug target for inhibition of trigeminal activation. Neuropharmacology, 2018, 140, 1-13.	2.0	19
30	A novel de novo variant of GABRA1 causes increased sensitivity for GABA in vitro. Scientific Reports, 2020, 10, 2379.	1.6	18
31	Raman and infrared vibrational spectra, ab initio calculations and normal coordinate analyses for 1,2-dimethyltetrachlorodisilane and 1,2-dimethyltetrachlorodisilane-d6. Journal of Molecular Structure, 1997, 412, 83-95.	1.8	16
32	Raman and infrared vibrational spectra, normal coordinate analysis andab initio calculations of 1,1,2,2-tetrachlorodisilane andab initio calculations of hexachlorodisilane. Journal of Raman Spectroscopy, 1997, 28, 589-597.	1.2	16
33	Identification of amino acid residues important for assembly of GABAA receptor alpha1 and gamma2 subunits. Journal of Neurochemistry, 2006, 96, 983-995.	2.1	15
34	GABAA Receptor Ligands Often Interact with Binding Sites in the Transmembrane Domain and in the Extracellular Domainâ€"Can the Promiscuity Code Be Cracked?. International Journal of Molecular Sciences, 2020, 21, 334.	1.8	15
35	Unexpected Properties of \hat{l} -Containing GABAA Receptors in Response to Ligands Interacting with the $\hat{l}\pm + \hat{l}^2\hat{a}$ Site. Neurochemical Research, 2014, 39, 1057-1067.	1.6	14
36	$\langle i \rangle \hat{l} \pm \langle i \rangle 6$ -Containing GABA $\langle sub \rangle$ A $\langle sub \rangle$ Receptors: Functional Roles and Therapeutic Potentials. Pharmacological Reviews, 2022, 74, 238-270.	7.1	14

#	Article	IF	CITATIONS
37	Mutagenesis and computational docking studies support the existence of a histamine binding site at the extracellular $\hat{l}^23+\hat{l}^23\hat{a}$ interface of homooligomeric \hat{l}^23 GABA A receptors. Neuropharmacology, 2016, 108, 252-263.	2.0	13
38	Defined concatenated $\hat{l}\pm6\hat{l}\pm1\hat{l}^23\hat{l}^32$ GABAA receptor constructs reveal dual action of pyrazoloquinolinone allosteric modulators. Bioorganic and Medicinal Chemistry, 2019, 27, 3167-3178.	1.4	13
39	Two Distinct Populations of $\hat{l}\pm 1\hat{l}\pm 6$ -Containing GABAA-Receptors in Rat Cerebellum. Frontiers in Synaptic Neuroscience, 2020, 12, 591129.	1.3	11
40	Molecular Mingling: Multimodal Predictions of Ligand Promiscuity in Pentameric Ligand-Gated Ion Channels. Frontiers in Molecular Biosciences, 2022, 9, .	1.6	10
41	Spontaneous Cross-link of Mutated $\hat{l}\pm 1$ Subunits during GABAA Receptor Assembly. Journal of Biological Chemistry, 2007, 282, 4354-4363.	1.6	9
42	Expeditious synthesis of polyacetylenic water hemlock toxins and their effects on the major GABA _A receptor isoform. Chemical Communications, 2018, 54, 2008-2011.	2.2	9
43	Metal-assisted synthesis of unsymmetrical magnolol and honokiol analogs and their biological assessment as GABAA receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 400-403.	1.0	8
44	Engineered Flumazenil Recognition Site Provides Mechanistic Insight Governing Benzodiazepine Modulation in GABA _A Receptors. ACS Chemical Biology, 2018, 13, 2040-2047.	1.6	8
45	Molecular basis of mood and cognitive adverse events elucidated via a combination of pharmacovigilance data mining and functional enrichment analysis. Archives of Toxicology, 2020, 94, 2829-2845.	1.9	7
46	Tricyclic antipsychotics and antidepressants can inhibit α5â€containing GABA _A receptors by two distinct mechanisms. British Journal of Pharmacology, 2022, 179, 3675-3692.	2.7	7
47	Attaining in vivo selectivity of positive modulation of $\hat{l}\pm3\hat{l}^2\hat{l}^32$ GABAA receptors in rats: A hard task!. European Neuropsychopharmacology, 2018, 28, 903-914.	0.3	6
48	A Pentasymmetric Open Channel Blocker for Cys-Loop Receptor Channels. PLoS ONE, 2014, 9, e106688.	1.1	6
49	A de novo missense variant in <i>GABRA4</i> alters receptor function in an epileptic and neurodevelopmental phenotype. Epilepsia, 2022, 63, .	2.6	6
50	Unravelling the Turnâ€On Fluorescence Mechanism of a Fluoresceinâ€Based Probe in GABA _A Receptors. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
51	Diversity matters: combinatorial information coding by GABAA receptor subunits during spatial learning and its allosteric modulation. Cellular Signalling, 2018, 50, 142-159.	1.7	5
52	SAR-Guided Scoring Function and Mutational Validation Reveal the Binding Mode of CGS-8216 at the $\hat{l}\pm 1+\hat{l}^32\hat{a}\in Benzodiaze$ pine Site. Journal of Chemical Information and Modeling, 2018, 58, 1682-1696.	2.5	5
53	A Benzodiazepine Ligand with Improved GABA $<$ sub $>$ A $<$ /sub $>$ Receptor $<$ i $>$ Î $\pm <$ /i $>$ 5-Subunit Selectivity Driven by Interactions with Loop C. Molecular Pharmacology, 2021, 99, 39-48.	1.0	5
54	Structure-Guided Computational Methods Predict Multiple Distinct Binding Modes for Pyrazoloquinolinones in GABAA Receptors. Frontiers in Neuroscience, 2020, 14, 611953.	1.4	5

#	Article	IF	CITATIONS
55	Variations on a scaffold - Novel GABAA receptor modulators. European Journal of Medicinal Chemistry, 2019, 180, 340-349.	2.6	4
56	Phenotypic variability of <i>GABRA1</i> Pielated epilepsy in monozygotic twins. Annals of Clinical and Translational Neurology, 2019, 6, 2317-2322.	1.7	4
57	Unravelling the Turnâ€On Fluorescence Mechanism of a Fluoresceinâ€Based Probe in GABA _A Receptors. Angewandte Chemie, 0, , .	1.6	4
58	GABAA receptor subtypes: structural variety raises hope for new therapy concepts. E-Neuroforum, 2015, 6, 97-103.	0.2	3
59	1,1,1,3,3,3-Hexabromotrisilane: structure and conformation determined by gas-phase electron diffraction, ab initio molecular orbital and molecular mechanics calculations, and vibrational spectroscopy. Computational and Theoretical Chemistry, 1995, 372, 161-172.	1.5	2
60	Stereoselective Synthesis of the Isomers of Notoincisol A: Assignment of the Absolute Configuration of this Natural Product and Biological Evaluation. Journal of Natural Products, 2018, 81, 2419-2428.	1.5	1
61	The cerebellar α6 subunit-containing GABA _A receptor: A novel therapeutic target for disrupted prepulse inhibition in neuropsychiatric disorders. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-1-95.	0.0	1
62	Understanding subtype-selective allosteric modulation of GABAAreceptors. BMC Pharmacology & Empty Coxicology, 2012, 13, .	1.0	0
63	GABAA receptor subtypes: structural variety raises hope for new therapy concepts. E-Neuroforum, 2015, 21, .	0.2	0
64	Comparing the high affinity benzodiazepine binding site with the homologous "CGS 9895―site in GABAâ€A receptors (1059.1). FASEB Journal, 2014, 28, 1059.1.	0.2	0
65	A Novel Target for Migraine Therapy: the α6 Subunit-Containing GABA _A Receptor. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-1-136.	0.0	0
66	A Novel Drug Target for Migraine: The GABA A Receptor α6 Subtype in Trigeminal Ganglia. FASEB Journal, 2019, 33, lb78.	0.2	0
67	Infrared and Raman Spectra, ab initio Calculations, and Rotational Isomerism of Methylated Disilanes. , 0, , 241-247.		0
68	Back Cover: Unravelling the Turnâ€On Fluorescence Mechanism of a Fluoresceinâ€Based Probe in GABA _A Receptors (Angew. Chem. Int. Ed. 30/2022). Angewandte Chemie - International Edition, 2022, 61, .	7.2	0